Loading…
Composition and Rheological Properties of Flour and Dough from Genetically Modified Wheat (Triticum aestivum L.) Hi-Line 111
The main objective of this work was to evaluate the composition, nutritional, physical and rheological properties of wheat flour and dough from genetically modified wheat (Triticum aestivum L.) Hi-Line 111 (GMW) compared to conventional wheat (non-GMW). Analyses were conducted to measure the proxima...
Saved in:
Published in: | Cereal research communications 2016-12, Vol.44 (4), p.605-616 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 616 |
container_issue | 4 |
container_start_page | 605 |
container_title | Cereal research communications |
container_volume | 44 |
creator | Elfattah, M.A. Elsanhoty, R.M. Ramadan, M.F. Osman, M.O. |
description | The main objective of this work was to evaluate the composition, nutritional, physical and rheological properties of wheat flour and dough from genetically modified wheat (Triticum aestivum L.) Hi-Line 111 (GMW) compared to conventional wheat (non-GMW). Analyses were conducted to measure the proximate chemical composition with references to 18 components including total solid, protein, lipids, crude fiber, ash, carbohydrate, minerals, amino acids, and fatty acids. In addition, physical and rheological properties such as water absorption, arrival time, dough development time, stability value, dough weakening value, extensibility of dough, resistance to extension, and ratio of resistance/extensibility were evaluated. The results showed that there were no significant differences between GMW and non-GMW in terms of chemical composition. Results revealed the presence of saturated and unsaturated fatty acids wherein there were no significant differences between GMW and its counterpart in the levels of fatty acids. In addition, there were no significant differences on the levels of amino acids. In addition, there were no significant differences between the GMW and non-GMW in the physical and rheological properties. From these results, it can be concluded that GMW Hi-Line 111 is confirmed to have nearly the composition and rheological properties as non-GMW. |
doi_str_mv | 10.1556/0806.44.2016.024 |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A469330452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A469330452</galeid><jstor_id>24915940</jstor_id><sourcerecordid>A469330452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-44040720e0fb22ccb30e226c1a8873b2d3789dafae28714e7a70dace46deb5b93</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMoOK7ePeYi6KHbykd3OsdldD9gxGVZ8RjS6cpMhu7OkPQIC_74zex48LTkUCG8T1XqIeQjg5o1TfsVOmhrKWsOrK2By1dkxVTXVZopeE1WwISohOLwlrzLeQ_QSK3livxdx-kQc1hCnKmdB3q_wzjGbXB2pHcpHjAtATONnl6N8ZieM9_icbujPsWJXuOMyyk8PtIfcQg-4EB_79Au9PNDKm3dcaIW8xL-lMum_kJvQrUJM1LG2Hvyxtsx44d_9YL8uvr-sL6pNj-vb9eXm8oJqZdKSpBQvo7ge86d6wUg561jtuuU6PkgVKcH6y3yTjGJyioYrEPZDtg3vRYXpD733doRTZh9XJJ15Qw4BRdn9KG8X8pWCwGy4QWAM-BSzDmhN4cUJpseDQNz0m1Ouo2U5qTbFN0FYWckl-i8xWT2Rddc1nqJ-XRm9nmJ6f8ZXIAyXGrWaAniCeS9jUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Composition and Rheological Properties of Flour and Dough from Genetically Modified Wheat (Triticum aestivum L.) Hi-Line 111</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Springer Nature</source><creator>Elfattah, M.A. ; Elsanhoty, R.M. ; Ramadan, M.F. ; Osman, M.O.</creator><creatorcontrib>Elfattah, M.A. ; Elsanhoty, R.M. ; Ramadan, M.F. ; Osman, M.O.</creatorcontrib><description>The main objective of this work was to evaluate the composition, nutritional, physical and rheological properties of wheat flour and dough from genetically modified wheat (Triticum aestivum L.) Hi-Line 111 (GMW) compared to conventional wheat (non-GMW). Analyses were conducted to measure the proximate chemical composition with references to 18 components including total solid, protein, lipids, crude fiber, ash, carbohydrate, minerals, amino acids, and fatty acids. In addition, physical and rheological properties such as water absorption, arrival time, dough development time, stability value, dough weakening value, extensibility of dough, resistance to extension, and ratio of resistance/extensibility were evaluated. The results showed that there were no significant differences between GMW and non-GMW in terms of chemical composition. Results revealed the presence of saturated and unsaturated fatty acids wherein there were no significant differences between GMW and its counterpart in the levels of fatty acids. In addition, there were no significant differences on the levels of amino acids. In addition, there were no significant differences between the GMW and non-GMW in the physical and rheological properties. From these results, it can be concluded that GMW Hi-Line 111 is confirmed to have nearly the composition and rheological properties as non-GMW.</description><identifier>ISSN: 0133-3720</identifier><identifier>EISSN: 1788-9170</identifier><identifier>DOI: 10.1556/0806.44.2016.024</identifier><language>eng</language><publisher>Cham: AKADÉMIAI KIADÓ</publisher><subject>Agriculture ; Composition ; Dough ; Flour ; Genetic aspects ; Genetically modified crops ; Life Sciences ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plant Physiology ; Properties ; Quality and Utilization ; Wheat</subject><ispartof>Cereal research communications, 2016-12, Vol.44 (4), p.605-616</ispartof><rights>Akadémiai Kiadó 2016</rights><rights>Akadémiai Kiadó, Budapest 2016</rights><rights>COPYRIGHT 2016 Akademiai Kiado</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24915940$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24915940$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids></links><search><creatorcontrib>Elfattah, M.A.</creatorcontrib><creatorcontrib>Elsanhoty, R.M.</creatorcontrib><creatorcontrib>Ramadan, M.F.</creatorcontrib><creatorcontrib>Osman, M.O.</creatorcontrib><title>Composition and Rheological Properties of Flour and Dough from Genetically Modified Wheat (Triticum aestivum L.) Hi-Line 111</title><title>Cereal research communications</title><addtitle>CEREAL RESEARCH COMMUNICATIONS</addtitle><description>The main objective of this work was to evaluate the composition, nutritional, physical and rheological properties of wheat flour and dough from genetically modified wheat (Triticum aestivum L.) Hi-Line 111 (GMW) compared to conventional wheat (non-GMW). Analyses were conducted to measure the proximate chemical composition with references to 18 components including total solid, protein, lipids, crude fiber, ash, carbohydrate, minerals, amino acids, and fatty acids. In addition, physical and rheological properties such as water absorption, arrival time, dough development time, stability value, dough weakening value, extensibility of dough, resistance to extension, and ratio of resistance/extensibility were evaluated. The results showed that there were no significant differences between GMW and non-GMW in terms of chemical composition. Results revealed the presence of saturated and unsaturated fatty acids wherein there were no significant differences between GMW and its counterpart in the levels of fatty acids. In addition, there were no significant differences on the levels of amino acids. In addition, there were no significant differences between the GMW and non-GMW in the physical and rheological properties. From these results, it can be concluded that GMW Hi-Line 111 is confirmed to have nearly the composition and rheological properties as non-GMW.</description><subject>Agriculture</subject><subject>Composition</subject><subject>Dough</subject><subject>Flour</subject><subject>Genetic aspects</subject><subject>Genetically modified crops</subject><subject>Life Sciences</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Properties</subject><subject>Quality and Utilization</subject><subject>Wheat</subject><issn>0133-3720</issn><issn>1788-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoMoOK7ePeYi6KHbykd3OsdldD9gxGVZ8RjS6cpMhu7OkPQIC_74zex48LTkUCG8T1XqIeQjg5o1TfsVOmhrKWsOrK2By1dkxVTXVZopeE1WwISohOLwlrzLeQ_QSK3livxdx-kQc1hCnKmdB3q_wzjGbXB2pHcpHjAtATONnl6N8ZieM9_icbujPsWJXuOMyyk8PtIfcQg-4EB_79Au9PNDKm3dcaIW8xL-lMum_kJvQrUJM1LG2Hvyxtsx44d_9YL8uvr-sL6pNj-vb9eXm8oJqZdKSpBQvo7ge86d6wUg561jtuuU6PkgVKcH6y3yTjGJyioYrEPZDtg3vRYXpD733doRTZh9XJJ15Qw4BRdn9KG8X8pWCwGy4QWAM-BSzDmhN4cUJpseDQNz0m1Ouo2U5qTbFN0FYWckl-i8xWT2Rddc1nqJ-XRm9nmJ6f8ZXIAyXGrWaAniCeS9jUY</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Elfattah, M.A.</creator><creator>Elsanhoty, R.M.</creator><creator>Ramadan, M.F.</creator><creator>Osman, M.O.</creator><general>AKADÉMIAI KIADÓ</general><general>Springer International Publishing</general><general>Akademiai Kiado</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Composition and Rheological Properties of Flour and Dough from Genetically Modified Wheat (Triticum aestivum L.) Hi-Line 111</title><author>Elfattah, M.A. ; Elsanhoty, R.M. ; Ramadan, M.F. ; Osman, M.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-44040720e0fb22ccb30e226c1a8873b2d3789dafae28714e7a70dace46deb5b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agriculture</topic><topic>Composition</topic><topic>Dough</topic><topic>Flour</topic><topic>Genetic aspects</topic><topic>Genetically modified crops</topic><topic>Life Sciences</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Properties</topic><topic>Quality and Utilization</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elfattah, M.A.</creatorcontrib><creatorcontrib>Elsanhoty, R.M.</creatorcontrib><creatorcontrib>Ramadan, M.F.</creatorcontrib><creatorcontrib>Osman, M.O.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Cereal research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elfattah, M.A.</au><au>Elsanhoty, R.M.</au><au>Ramadan, M.F.</au><au>Osman, M.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition and Rheological Properties of Flour and Dough from Genetically Modified Wheat (Triticum aestivum L.) Hi-Line 111</atitle><jtitle>Cereal research communications</jtitle><stitle>CEREAL RESEARCH COMMUNICATIONS</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>44</volume><issue>4</issue><spage>605</spage><epage>616</epage><pages>605-616</pages><issn>0133-3720</issn><eissn>1788-9170</eissn><abstract>The main objective of this work was to evaluate the composition, nutritional, physical and rheological properties of wheat flour and dough from genetically modified wheat (Triticum aestivum L.) Hi-Line 111 (GMW) compared to conventional wheat (non-GMW). Analyses were conducted to measure the proximate chemical composition with references to 18 components including total solid, protein, lipids, crude fiber, ash, carbohydrate, minerals, amino acids, and fatty acids. In addition, physical and rheological properties such as water absorption, arrival time, dough development time, stability value, dough weakening value, extensibility of dough, resistance to extension, and ratio of resistance/extensibility were evaluated. The results showed that there were no significant differences between GMW and non-GMW in terms of chemical composition. Results revealed the presence of saturated and unsaturated fatty acids wherein there were no significant differences between GMW and its counterpart in the levels of fatty acids. In addition, there were no significant differences on the levels of amino acids. In addition, there were no significant differences between the GMW and non-GMW in the physical and rheological properties. From these results, it can be concluded that GMW Hi-Line 111 is confirmed to have nearly the composition and rheological properties as non-GMW.</abstract><cop>Cham</cop><pub>AKADÉMIAI KIADÓ</pub><doi>10.1556/0806.44.2016.024</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0133-3720 |
ispartof | Cereal research communications, 2016-12, Vol.44 (4), p.605-616 |
issn | 0133-3720 1788-9170 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A469330452 |
source | JSTOR Archival Journals and Primary Sources Collection; Springer Nature |
subjects | Agriculture Composition Dough Flour Genetic aspects Genetically modified crops Life Sciences Plant Breeding/Biotechnology Plant Genetics and Genomics Plant Physiology Properties Quality and Utilization Wheat |
title | Composition and Rheological Properties of Flour and Dough from Genetically Modified Wheat (Triticum aestivum L.) Hi-Line 111 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20and%20Rheological%20Properties%20of%20Flour%20and%20Dough%20from%20Genetically%20Modified%20Wheat%20(Triticum%20aestivum%20L.)%20Hi-Line%20111&rft.jtitle=Cereal%20research%20communications&rft.au=Elfattah,%20M.A.&rft.date=2016-12-01&rft.volume=44&rft.issue=4&rft.spage=605&rft.epage=616&rft.pages=605-616&rft.issn=0133-3720&rft.eissn=1788-9170&rft_id=info:doi/10.1556/0806.44.2016.024&rft_dat=%3Cgale_cross%3EA469330452%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-44040720e0fb22ccb30e226c1a8873b2d3789dafae28714e7a70dace46deb5b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A469330452&rft_jstor_id=24915940&rfr_iscdi=true |