Loading…
Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles with enhanced lithium storage capabilities
Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles were synthesized through sulfurizing ZnFe.sub.2O.sub.4 nanoparticles in the hydrothermal process using Na.sub.2S as the sulfur source. The content of sulfur dopant was tuned from 0.70 to 1.26 wt% by controlling concentrations of Na.sub.2S solutions. When...
Saved in:
Published in: | Journal of materials science 2017-04, Vol.52 (7), p.3566 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 7 |
container_start_page | 3566 |
container_title | Journal of materials science |
container_volume | 52 |
creator | Nie, Longying Wang, Huijun Ma, Jingjing Liu, Sheng Yuan, Ruo |
description | Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles were synthesized through sulfurizing ZnFe.sub.2O.sub.4 nanoparticles in the hydrothermal process using Na.sub.2S as the sulfur source. The content of sulfur dopant was tuned from 0.70 to 1.26 wt% by controlling concentrations of Na.sub.2S solutions. When evaluated as anode materials for lithium-ion batteries, sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles exhibited much higher reversible capacities, better rate performances, and more excellent cycling stabilities than the pristine ZnFe.sub.2O.sub.4 nanoparticles. After 60 cycles at a current density of 100 mA g.sup.-1, the electrode of sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles (1.26 wt%) delivered a reversible specific capacity of 604 mA h g.sup.-1, while the pristine ZnFe.sub.2O.sub.4 electrode only remained 200 mA h g.sup.-1. |
doi_str_mv | 10.1007/s10853-016-0373-y |
format | article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A493711648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493711648</galeid><sourcerecordid>A493711648</sourcerecordid><originalsourceid>FETCH-LOGICAL-g738-65dc06657727521e8ee2dbff118728d8b87f8777b17baa7bf71085ccea59bd293</originalsourceid><addsrcrecordid>eNpVj81LAzEQxYMoWKt_gLe9esiaj92d9FiKVaFQsAXBS0myk21kmy2bXdT_3vhxUObwZh6_92AIueYs54zBbeRMlZIyXlEmQdKPEzLhZVoKxeQpmTAmBBVFxc_JRYyvjLESBJ-Q583YurGndXfEOnsJS8zjaHKx_pYiCzp0R90P3rYYszc_7DMMex1sott0-fGQxaHrdYOZ1UdtfHI9xkty5nQb8epXp2S7vNsuHuhqff-4mK9oA1LRqqwtq6oSQEApOCpEURvnOFcgVK2MAqcAwHAwWoNx8PWmtajLmanFTE5J_lPb6BZ3Prhu6LVNU-PB2y6g88mfFzMJnFeFSoGbf4HEDPg-NHqMcfe4efrLfgIlKWWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles with enhanced lithium storage capabilities</title><source>Springer Link</source><creator>Nie, Longying ; Wang, Huijun ; Ma, Jingjing ; Liu, Sheng ; Yuan, Ruo</creator><creatorcontrib>Nie, Longying ; Wang, Huijun ; Ma, Jingjing ; Liu, Sheng ; Yuan, Ruo</creatorcontrib><description>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles were synthesized through sulfurizing ZnFe.sub.2O.sub.4 nanoparticles in the hydrothermal process using Na.sub.2S as the sulfur source. The content of sulfur dopant was tuned from 0.70 to 1.26 wt% by controlling concentrations of Na.sub.2S solutions. When evaluated as anode materials for lithium-ion batteries, sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles exhibited much higher reversible capacities, better rate performances, and more excellent cycling stabilities than the pristine ZnFe.sub.2O.sub.4 nanoparticles. After 60 cycles at a current density of 100 mA g.sup.-1, the electrode of sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles (1.26 wt%) delivered a reversible specific capacity of 604 mA h g.sup.-1, while the pristine ZnFe.sub.2O.sub.4 electrode only remained 200 mA h g.sup.-1.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-016-0373-y</identifier><language>eng</language><publisher>Springer</publisher><subject>Batteries ; Nanoparticles ; Sulfur ; Sulfur compounds</subject><ispartof>Journal of materials science, 2017-04, Vol.52 (7), p.3566</ispartof><rights>COPYRIGHT 2017 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nie, Longying</creatorcontrib><creatorcontrib>Wang, Huijun</creatorcontrib><creatorcontrib>Ma, Jingjing</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Yuan, Ruo</creatorcontrib><title>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles with enhanced lithium storage capabilities</title><title>Journal of materials science</title><description>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles were synthesized through sulfurizing ZnFe.sub.2O.sub.4 nanoparticles in the hydrothermal process using Na.sub.2S as the sulfur source. The content of sulfur dopant was tuned from 0.70 to 1.26 wt% by controlling concentrations of Na.sub.2S solutions. When evaluated as anode materials for lithium-ion batteries, sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles exhibited much higher reversible capacities, better rate performances, and more excellent cycling stabilities than the pristine ZnFe.sub.2O.sub.4 nanoparticles. After 60 cycles at a current density of 100 mA g.sup.-1, the electrode of sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles (1.26 wt%) delivered a reversible specific capacity of 604 mA h g.sup.-1, while the pristine ZnFe.sub.2O.sub.4 electrode only remained 200 mA h g.sup.-1.</description><subject>Batteries</subject><subject>Nanoparticles</subject><subject>Sulfur</subject><subject>Sulfur compounds</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVj81LAzEQxYMoWKt_gLe9esiaj92d9FiKVaFQsAXBS0myk21kmy2bXdT_3vhxUObwZh6_92AIueYs54zBbeRMlZIyXlEmQdKPEzLhZVoKxeQpmTAmBBVFxc_JRYyvjLESBJ-Q583YurGndXfEOnsJS8zjaHKx_pYiCzp0R90P3rYYszc_7DMMex1sott0-fGQxaHrdYOZ1UdtfHI9xkty5nQb8epXp2S7vNsuHuhqff-4mK9oA1LRqqwtq6oSQEApOCpEURvnOFcgVK2MAqcAwHAwWoNx8PWmtajLmanFTE5J_lPb6BZ3Prhu6LVNU-PB2y6g88mfFzMJnFeFSoGbf4HEDPg-NHqMcfe4efrLfgIlKWWA</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Nie, Longying</creator><creator>Wang, Huijun</creator><creator>Ma, Jingjing</creator><creator>Liu, Sheng</creator><creator>Yuan, Ruo</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20170401</creationdate><title>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles with enhanced lithium storage capabilities</title><author>Nie, Longying ; Wang, Huijun ; Ma, Jingjing ; Liu, Sheng ; Yuan, Ruo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g738-65dc06657727521e8ee2dbff118728d8b87f8777b17baa7bf71085ccea59bd293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Batteries</topic><topic>Nanoparticles</topic><topic>Sulfur</topic><topic>Sulfur compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Longying</creatorcontrib><creatorcontrib>Wang, Huijun</creatorcontrib><creatorcontrib>Ma, Jingjing</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Yuan, Ruo</creatorcontrib><collection>Science in Context</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Longying</au><au>Wang, Huijun</au><au>Ma, Jingjing</au><au>Liu, Sheng</au><au>Yuan, Ruo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles with enhanced lithium storage capabilities</atitle><jtitle>Journal of materials science</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>52</volume><issue>7</issue><spage>3566</spage><pages>3566-</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles were synthesized through sulfurizing ZnFe.sub.2O.sub.4 nanoparticles in the hydrothermal process using Na.sub.2S as the sulfur source. The content of sulfur dopant was tuned from 0.70 to 1.26 wt% by controlling concentrations of Na.sub.2S solutions. When evaluated as anode materials for lithium-ion batteries, sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles exhibited much higher reversible capacities, better rate performances, and more excellent cycling stabilities than the pristine ZnFe.sub.2O.sub.4 nanoparticles. After 60 cycles at a current density of 100 mA g.sup.-1, the electrode of sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles (1.26 wt%) delivered a reversible specific capacity of 604 mA h g.sup.-1, while the pristine ZnFe.sub.2O.sub.4 electrode only remained 200 mA h g.sup.-1.</abstract><pub>Springer</pub><doi>10.1007/s10853-016-0373-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2017-04, Vol.52 (7), p.3566 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A493711648 |
source | Springer Link |
subjects | Batteries Nanoparticles Sulfur Sulfur compounds |
title | Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles with enhanced lithium storage capabilities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur-doped%20ZnFe.sub.2O.sub.4%20nanoparticles%20with%20enhanced%20lithium%20storage%20capabilities&rft.jtitle=Journal%20of%20materials%20science&rft.au=Nie,%20Longying&rft.date=2017-04-01&rft.volume=52&rft.issue=7&rft.spage=3566&rft.pages=3566-&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-016-0373-y&rft_dat=%3Cgale%3EA493711648%3C/gale%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g738-65dc06657727521e8ee2dbff118728d8b87f8777b17baa7bf71085ccea59bd293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A493711648&rfr_iscdi=true |