Loading…

Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles with enhanced lithium storage capabilities

Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles were synthesized through sulfurizing ZnFe.sub.2O.sub.4 nanoparticles in the hydrothermal process using Na.sub.2S as the sulfur source. The content of sulfur dopant was tuned from 0.70 to 1.26 wt% by controlling concentrations of Na.sub.2S solutions. When...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2017-04, Vol.52 (7), p.3566
Main Authors: Nie, Longying, Wang, Huijun, Ma, Jingjing, Liu, Sheng, Yuan, Ruo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 7
container_start_page 3566
container_title Journal of materials science
container_volume 52
creator Nie, Longying
Wang, Huijun
Ma, Jingjing
Liu, Sheng
Yuan, Ruo
description Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles were synthesized through sulfurizing ZnFe.sub.2O.sub.4 nanoparticles in the hydrothermal process using Na.sub.2S as the sulfur source. The content of sulfur dopant was tuned from 0.70 to 1.26 wt% by controlling concentrations of Na.sub.2S solutions. When evaluated as anode materials for lithium-ion batteries, sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles exhibited much higher reversible capacities, better rate performances, and more excellent cycling stabilities than the pristine ZnFe.sub.2O.sub.4 nanoparticles. After 60 cycles at a current density of 100 mA g.sup.-1, the electrode of sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles (1.26 wt%) delivered a reversible specific capacity of 604 mA h g.sup.-1, while the pristine ZnFe.sub.2O.sub.4 electrode only remained 200 mA h g.sup.-1.
doi_str_mv 10.1007/s10853-016-0373-y
format article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A493711648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493711648</galeid><sourcerecordid>A493711648</sourcerecordid><originalsourceid>FETCH-LOGICAL-g738-65dc06657727521e8ee2dbff118728d8b87f8777b17baa7bf71085ccea59bd293</originalsourceid><addsrcrecordid>eNpVj81LAzEQxYMoWKt_gLe9esiaj92d9FiKVaFQsAXBS0myk21kmy2bXdT_3vhxUObwZh6_92AIueYs54zBbeRMlZIyXlEmQdKPEzLhZVoKxeQpmTAmBBVFxc_JRYyvjLESBJ-Q583YurGndXfEOnsJS8zjaHKx_pYiCzp0R90P3rYYszc_7DMMex1sott0-fGQxaHrdYOZ1UdtfHI9xkty5nQb8epXp2S7vNsuHuhqff-4mK9oA1LRqqwtq6oSQEApOCpEURvnOFcgVK2MAqcAwHAwWoNx8PWmtajLmanFTE5J_lPb6BZ3Prhu6LVNU-PB2y6g88mfFzMJnFeFSoGbf4HEDPg-NHqMcfe4efrLfgIlKWWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles with enhanced lithium storage capabilities</title><source>Springer Link</source><creator>Nie, Longying ; Wang, Huijun ; Ma, Jingjing ; Liu, Sheng ; Yuan, Ruo</creator><creatorcontrib>Nie, Longying ; Wang, Huijun ; Ma, Jingjing ; Liu, Sheng ; Yuan, Ruo</creatorcontrib><description>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles were synthesized through sulfurizing ZnFe.sub.2O.sub.4 nanoparticles in the hydrothermal process using Na.sub.2S as the sulfur source. The content of sulfur dopant was tuned from 0.70 to 1.26 wt% by controlling concentrations of Na.sub.2S solutions. When evaluated as anode materials for lithium-ion batteries, sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles exhibited much higher reversible capacities, better rate performances, and more excellent cycling stabilities than the pristine ZnFe.sub.2O.sub.4 nanoparticles. After 60 cycles at a current density of 100 mA g.sup.-1, the electrode of sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles (1.26 wt%) delivered a reversible specific capacity of 604 mA h g.sup.-1, while the pristine ZnFe.sub.2O.sub.4 electrode only remained 200 mA h g.sup.-1.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-016-0373-y</identifier><language>eng</language><publisher>Springer</publisher><subject>Batteries ; Nanoparticles ; Sulfur ; Sulfur compounds</subject><ispartof>Journal of materials science, 2017-04, Vol.52 (7), p.3566</ispartof><rights>COPYRIGHT 2017 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nie, Longying</creatorcontrib><creatorcontrib>Wang, Huijun</creatorcontrib><creatorcontrib>Ma, Jingjing</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Yuan, Ruo</creatorcontrib><title>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles with enhanced lithium storage capabilities</title><title>Journal of materials science</title><description>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles were synthesized through sulfurizing ZnFe.sub.2O.sub.4 nanoparticles in the hydrothermal process using Na.sub.2S as the sulfur source. The content of sulfur dopant was tuned from 0.70 to 1.26 wt% by controlling concentrations of Na.sub.2S solutions. When evaluated as anode materials for lithium-ion batteries, sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles exhibited much higher reversible capacities, better rate performances, and more excellent cycling stabilities than the pristine ZnFe.sub.2O.sub.4 nanoparticles. After 60 cycles at a current density of 100 mA g.sup.-1, the electrode of sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles (1.26 wt%) delivered a reversible specific capacity of 604 mA h g.sup.-1, while the pristine ZnFe.sub.2O.sub.4 electrode only remained 200 mA h g.sup.-1.</description><subject>Batteries</subject><subject>Nanoparticles</subject><subject>Sulfur</subject><subject>Sulfur compounds</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVj81LAzEQxYMoWKt_gLe9esiaj92d9FiKVaFQsAXBS0myk21kmy2bXdT_3vhxUObwZh6_92AIueYs54zBbeRMlZIyXlEmQdKPEzLhZVoKxeQpmTAmBBVFxc_JRYyvjLESBJ-Q583YurGndXfEOnsJS8zjaHKx_pYiCzp0R90P3rYYszc_7DMMex1sott0-fGQxaHrdYOZ1UdtfHI9xkty5nQb8epXp2S7vNsuHuhqff-4mK9oA1LRqqwtq6oSQEApOCpEURvnOFcgVK2MAqcAwHAwWoNx8PWmtajLmanFTE5J_lPb6BZ3Prhu6LVNU-PB2y6g88mfFzMJnFeFSoGbf4HEDPg-NHqMcfe4efrLfgIlKWWA</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Nie, Longying</creator><creator>Wang, Huijun</creator><creator>Ma, Jingjing</creator><creator>Liu, Sheng</creator><creator>Yuan, Ruo</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20170401</creationdate><title>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles with enhanced lithium storage capabilities</title><author>Nie, Longying ; Wang, Huijun ; Ma, Jingjing ; Liu, Sheng ; Yuan, Ruo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g738-65dc06657727521e8ee2dbff118728d8b87f8777b17baa7bf71085ccea59bd293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Batteries</topic><topic>Nanoparticles</topic><topic>Sulfur</topic><topic>Sulfur compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Longying</creatorcontrib><creatorcontrib>Wang, Huijun</creatorcontrib><creatorcontrib>Ma, Jingjing</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Yuan, Ruo</creatorcontrib><collection>Science in Context</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Longying</au><au>Wang, Huijun</au><au>Ma, Jingjing</au><au>Liu, Sheng</au><au>Yuan, Ruo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles with enhanced lithium storage capabilities</atitle><jtitle>Journal of materials science</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>52</volume><issue>7</issue><spage>3566</spage><pages>3566-</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles were synthesized through sulfurizing ZnFe.sub.2O.sub.4 nanoparticles in the hydrothermal process using Na.sub.2S as the sulfur source. The content of sulfur dopant was tuned from 0.70 to 1.26 wt% by controlling concentrations of Na.sub.2S solutions. When evaluated as anode materials for lithium-ion batteries, sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles exhibited much higher reversible capacities, better rate performances, and more excellent cycling stabilities than the pristine ZnFe.sub.2O.sub.4 nanoparticles. After 60 cycles at a current density of 100 mA g.sup.-1, the electrode of sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles (1.26 wt%) delivered a reversible specific capacity of 604 mA h g.sup.-1, while the pristine ZnFe.sub.2O.sub.4 electrode only remained 200 mA h g.sup.-1.</abstract><pub>Springer</pub><doi>10.1007/s10853-016-0373-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2017-04, Vol.52 (7), p.3566
issn 0022-2461
1573-4803
language eng
recordid cdi_gale_infotracacademiconefile_A493711648
source Springer Link
subjects Batteries
Nanoparticles
Sulfur
Sulfur compounds
title Sulfur-doped ZnFe.sub.2O.sub.4 nanoparticles with enhanced lithium storage capabilities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur-doped%20ZnFe.sub.2O.sub.4%20nanoparticles%20with%20enhanced%20lithium%20storage%20capabilities&rft.jtitle=Journal%20of%20materials%20science&rft.au=Nie,%20Longying&rft.date=2017-04-01&rft.volume=52&rft.issue=7&rft.spage=3566&rft.pages=3566-&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-016-0373-y&rft_dat=%3Cgale%3EA493711648%3C/gale%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g738-65dc06657727521e8ee2dbff118728d8b87f8777b17baa7bf71085ccea59bd293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A493711648&rfr_iscdi=true