Loading…
Collaborative intelligence and gamification for on-line malaria species differentiation
Background Current World Health Organization recommendations for the management of malaria include the need for a parasitological confirmation prior to triggering appropriate treatment. The use of rapid diagnostic tests (RDTs) for malaria has contributed to a better infection recognition and a more...
Saved in:
Published in: | Malaria Journal 2019, Vol.18 (1) |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Report |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Malaria Journal |
container_volume | 18 |
creator | Linares, María Postigo, María Cuadrado, Daniel O Gil-Casanova, Sara Vladimirov, Alexander García-Villena, Jaime Nuéez-Escobedo, José María Martínez-López, Joaquín Rubio, José Miguel Ledesma-Carbayo, María Jesús Santos, Andrés Bassat, Quique Luengo-Oroz, Miguel |
description | Background Current World Health Organization recommendations for the management of malaria include the need for a parasitological confirmation prior to triggering appropriate treatment. The use of rapid diagnostic tests (RDTs) for malaria has contributed to a better infection recognition and a more targeted treatment. Nevertheless, low-density infections and parasites that fail to produce HRP2 can cause false-negative RDT results. Microscopy has traditionally been the methodology most commonly used to quantify malaria and characterize the infecting species, but the wider use of this technique remains challenging, as it requires trained personnel and processing capacity. Objective In this study, the feasibility of an on-line system for remote malaria species identification and differentiation has been investigated by crowdsourcing the analysis of digitalized infected thin blood smears by non-expert observers using a mobile app. Methods An on-line videogame in which players learned how to differentiate the young trophozoite stage of the five Plasmodium species has been designed. Images were digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Images from infected red blood cells were cropped and puzzled into an on-line game. During the game, players had to decide the malaria species (Plasmodium falciparum, Plasmodium malariae, Plasmodium vivax, Plasmodium ovale, Plasmodium knowlesi) of the infected cells that were shown in the screen. After 2 months, each player's decisions were analysed individually and collectively. Results On-line volunteers playing the game made more than 500,000 assessments for species differentiation. Statistically, when the choice of several players was combined (n > 25), they were able to significantly discriminate Plasmodium species, reaching a level of accuracy of 99% for all species combinations, except for P. knowlesi (80%). Non-expert decisions on which Plasmodium species was shown in the screen were made in less than 3 s. Conclusion These findings show that it is possible to train malaria-naïve non-experts to identify and differentiate malaria species in digitalized thin blood samples. Although the accuracy of a single player is not perfect, the combination of the responses of multiple casual gamers can achieve an accuracy that is within the range of the diagnostic accuracy made by a trained microscopist. Keywords: Crowdsourcing, Malaria classification, Image analysis, Games for health, |
doi_str_mv | 10.1186/s12936-019-2662-9 |
format | report |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A581427718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581427718</galeid><sourcerecordid>A581427718</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A5814277183</originalsourceid><addsrcrecordid>eNqVi81KxTAUhIMoeP15AHd5gdSe9LZJl1IUH0C4y8sxPSlH0hNJis9vERduZRYzfDOj1AO0DYAfHivYsRtMC6Oxw2DNeKEOcHS9sd71l3_ytbqp9aNtwXlnD-o05ZTwPRfc-Is0y0Yp8UISSKPMesGVI4e9zaJjLjqLSSykV0xYGHX9pMBU9cwxUiHZ-Gd7p64ipkr3v36rmpfnt-nVLJjozBLzVjDsmmnlkIUi7_yp93C0zoHv_n34Bp3bUWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Collaborative intelligence and gamification for on-line malaria species differentiation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Linares, María ; Postigo, María ; Cuadrado, Daniel ; O ; Gil-Casanova, Sara ; Vladimirov, Alexander ; García-Villena, Jaime ; Nuéez-Escobedo, José María ; Martínez-López, Joaquín ; Rubio, José Miguel ; Ledesma-Carbayo, María Jesús ; Santos, Andrés ; Bassat, Quique ; Luengo-Oroz, Miguel</creator><creatorcontrib>Linares, María ; Postigo, María ; Cuadrado, Daniel ; O ; Gil-Casanova, Sara ; Vladimirov, Alexander ; García-Villena, Jaime ; Nuéez-Escobedo, José María ; Martínez-López, Joaquín ; Rubio, José Miguel ; Ledesma-Carbayo, María Jesús ; Santos, Andrés ; Bassat, Quique ; Luengo-Oroz, Miguel</creatorcontrib><description>Background Current World Health Organization recommendations for the management of malaria include the need for a parasitological confirmation prior to triggering appropriate treatment. The use of rapid diagnostic tests (RDTs) for malaria has contributed to a better infection recognition and a more targeted treatment. Nevertheless, low-density infections and parasites that fail to produce HRP2 can cause false-negative RDT results. Microscopy has traditionally been the methodology most commonly used to quantify malaria and characterize the infecting species, but the wider use of this technique remains challenging, as it requires trained personnel and processing capacity. Objective In this study, the feasibility of an on-line system for remote malaria species identification and differentiation has been investigated by crowdsourcing the analysis of digitalized infected thin blood smears by non-expert observers using a mobile app. Methods An on-line videogame in which players learned how to differentiate the young trophozoite stage of the five Plasmodium species has been designed. Images were digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Images from infected red blood cells were cropped and puzzled into an on-line game. During the game, players had to decide the malaria species (Plasmodium falciparum, Plasmodium malariae, Plasmodium vivax, Plasmodium ovale, Plasmodium knowlesi) of the infected cells that were shown in the screen. After 2 months, each player's decisions were analysed individually and collectively. Results On-line volunteers playing the game made more than 500,000 assessments for species differentiation. Statistically, when the choice of several players was combined (n > 25), they were able to significantly discriminate Plasmodium species, reaching a level of accuracy of 99% for all species combinations, except for P. knowlesi (80%). Non-expert decisions on which Plasmodium species was shown in the screen were made in less than 3 s. Conclusion These findings show that it is possible to train malaria-naïve non-experts to identify and differentiate malaria species in digitalized thin blood samples. Although the accuracy of a single player is not perfect, the combination of the responses of multiple casual gamers can achieve an accuracy that is within the range of the diagnostic accuracy made by a trained microscopist. Keywords: Crowdsourcing, Malaria classification, Image analysis, Games for health, Telepathology</description><identifier>ISSN: 1475-2875</identifier><identifier>EISSN: 1475-2875</identifier><identifier>DOI: 10.1186/s12936-019-2662-9</identifier><language>eng</language><publisher>BioMed Central Ltd</publisher><subject>Blood tests ; Care and treatment ; Crowdsourcing ; Diagnosis ; Gamers ; Infection ; Malaria ; Medical tests ; Microscopy ; Patient outcomes ; Plasmodium falciparum ; Public health ; Risk factors</subject><ispartof>Malaria Journal, 2019, Vol.18 (1)</ispartof><rights>COPYRIGHT 2019 BioMed Central Ltd.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,4476,27901</link.rule.ids></links><search><creatorcontrib>Linares, María</creatorcontrib><creatorcontrib>Postigo, María</creatorcontrib><creatorcontrib>Cuadrado, Daniel</creatorcontrib><creatorcontrib>O</creatorcontrib><creatorcontrib>Gil-Casanova, Sara</creatorcontrib><creatorcontrib>Vladimirov, Alexander</creatorcontrib><creatorcontrib>García-Villena, Jaime</creatorcontrib><creatorcontrib>Nuéez-Escobedo, José María</creatorcontrib><creatorcontrib>Martínez-López, Joaquín</creatorcontrib><creatorcontrib>Rubio, José Miguel</creatorcontrib><creatorcontrib>Ledesma-Carbayo, María Jesús</creatorcontrib><creatorcontrib>Santos, Andrés</creatorcontrib><creatorcontrib>Bassat, Quique</creatorcontrib><creatorcontrib>Luengo-Oroz, Miguel</creatorcontrib><title>Collaborative intelligence and gamification for on-line malaria species differentiation</title><title>Malaria Journal</title><description>Background Current World Health Organization recommendations for the management of malaria include the need for a parasitological confirmation prior to triggering appropriate treatment. The use of rapid diagnostic tests (RDTs) for malaria has contributed to a better infection recognition and a more targeted treatment. Nevertheless, low-density infections and parasites that fail to produce HRP2 can cause false-negative RDT results. Microscopy has traditionally been the methodology most commonly used to quantify malaria and characterize the infecting species, but the wider use of this technique remains challenging, as it requires trained personnel and processing capacity. Objective In this study, the feasibility of an on-line system for remote malaria species identification and differentiation has been investigated by crowdsourcing the analysis of digitalized infected thin blood smears by non-expert observers using a mobile app. Methods An on-line videogame in which players learned how to differentiate the young trophozoite stage of the five Plasmodium species has been designed. Images were digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Images from infected red blood cells were cropped and puzzled into an on-line game. During the game, players had to decide the malaria species (Plasmodium falciparum, Plasmodium malariae, Plasmodium vivax, Plasmodium ovale, Plasmodium knowlesi) of the infected cells that were shown in the screen. After 2 months, each player's decisions were analysed individually and collectively. Results On-line volunteers playing the game made more than 500,000 assessments for species differentiation. Statistically, when the choice of several players was combined (n > 25), they were able to significantly discriminate Plasmodium species, reaching a level of accuracy of 99% for all species combinations, except for P. knowlesi (80%). Non-expert decisions on which Plasmodium species was shown in the screen were made in less than 3 s. Conclusion These findings show that it is possible to train malaria-naïve non-experts to identify and differentiate malaria species in digitalized thin blood samples. Although the accuracy of a single player is not perfect, the combination of the responses of multiple casual gamers can achieve an accuracy that is within the range of the diagnostic accuracy made by a trained microscopist. Keywords: Crowdsourcing, Malaria classification, Image analysis, Games for health, Telepathology</description><subject>Blood tests</subject><subject>Care and treatment</subject><subject>Crowdsourcing</subject><subject>Diagnosis</subject><subject>Gamers</subject><subject>Infection</subject><subject>Malaria</subject><subject>Medical tests</subject><subject>Microscopy</subject><subject>Patient outcomes</subject><subject>Plasmodium falciparum</subject><subject>Public health</subject><subject>Risk factors</subject><issn>1475-2875</issn><issn>1475-2875</issn><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2019</creationdate><recordtype>report</recordtype><sourceid/><recordid>eNqVi81KxTAUhIMoeP15AHd5gdSe9LZJl1IUH0C4y8sxPSlH0hNJis9vERduZRYzfDOj1AO0DYAfHivYsRtMC6Oxw2DNeKEOcHS9sd71l3_ytbqp9aNtwXlnD-o05ZTwPRfc-Is0y0Yp8UISSKPMesGVI4e9zaJjLjqLSSykV0xYGHX9pMBU9cwxUiHZ-Gd7p64ipkr3v36rmpfnt-nVLJjozBLzVjDsmmnlkIUi7_yp93C0zoHv_n34Bp3bUWc</recordid><startdate>20190124</startdate><enddate>20190124</enddate><creator>Linares, María</creator><creator>Postigo, María</creator><creator>Cuadrado, Daniel</creator><creator>O</creator><creator>Gil-Casanova, Sara</creator><creator>Vladimirov, Alexander</creator><creator>García-Villena, Jaime</creator><creator>Nuéez-Escobedo, José María</creator><creator>Martínez-López, Joaquín</creator><creator>Rubio, José Miguel</creator><creator>Ledesma-Carbayo, María Jesús</creator><creator>Santos, Andrés</creator><creator>Bassat, Quique</creator><creator>Luengo-Oroz, Miguel</creator><general>BioMed Central Ltd</general><scope/></search><sort><creationdate>20190124</creationdate><title>Collaborative intelligence and gamification for on-line malaria species differentiation</title><author>Linares, María ; Postigo, María ; Cuadrado, Daniel ; O ; Gil-Casanova, Sara ; Vladimirov, Alexander ; García-Villena, Jaime ; Nuéez-Escobedo, José María ; Martínez-López, Joaquín ; Rubio, José Miguel ; Ledesma-Carbayo, María Jesús ; Santos, Andrés ; Bassat, Quique ; Luengo-Oroz, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A5814277183</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Blood tests</topic><topic>Care and treatment</topic><topic>Crowdsourcing</topic><topic>Diagnosis</topic><topic>Gamers</topic><topic>Infection</topic><topic>Malaria</topic><topic>Medical tests</topic><topic>Microscopy</topic><topic>Patient outcomes</topic><topic>Plasmodium falciparum</topic><topic>Public health</topic><topic>Risk factors</topic><toplevel>online_resources</toplevel><creatorcontrib>Linares, María</creatorcontrib><creatorcontrib>Postigo, María</creatorcontrib><creatorcontrib>Cuadrado, Daniel</creatorcontrib><creatorcontrib>O</creatorcontrib><creatorcontrib>Gil-Casanova, Sara</creatorcontrib><creatorcontrib>Vladimirov, Alexander</creatorcontrib><creatorcontrib>García-Villena, Jaime</creatorcontrib><creatorcontrib>Nuéez-Escobedo, José María</creatorcontrib><creatorcontrib>Martínez-López, Joaquín</creatorcontrib><creatorcontrib>Rubio, José Miguel</creatorcontrib><creatorcontrib>Ledesma-Carbayo, María Jesús</creatorcontrib><creatorcontrib>Santos, Andrés</creatorcontrib><creatorcontrib>Bassat, Quique</creatorcontrib><creatorcontrib>Luengo-Oroz, Miguel</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linares, María</au><au>Postigo, María</au><au>Cuadrado, Daniel</au><au>O</au><au>Gil-Casanova, Sara</au><au>Vladimirov, Alexander</au><au>García-Villena, Jaime</au><au>Nuéez-Escobedo, José María</au><au>Martínez-López, Joaquín</au><au>Rubio, José Miguel</au><au>Ledesma-Carbayo, María Jesús</au><au>Santos, Andrés</au><au>Bassat, Quique</au><au>Luengo-Oroz, Miguel</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><atitle>Collaborative intelligence and gamification for on-line malaria species differentiation</atitle><jtitle>Malaria Journal</jtitle><date>2019-01-24</date><risdate>2019</risdate><volume>18</volume><issue>1</issue><issn>1475-2875</issn><eissn>1475-2875</eissn><abstract>Background Current World Health Organization recommendations for the management of malaria include the need for a parasitological confirmation prior to triggering appropriate treatment. The use of rapid diagnostic tests (RDTs) for malaria has contributed to a better infection recognition and a more targeted treatment. Nevertheless, low-density infections and parasites that fail to produce HRP2 can cause false-negative RDT results. Microscopy has traditionally been the methodology most commonly used to quantify malaria and characterize the infecting species, but the wider use of this technique remains challenging, as it requires trained personnel and processing capacity. Objective In this study, the feasibility of an on-line system for remote malaria species identification and differentiation has been investigated by crowdsourcing the analysis of digitalized infected thin blood smears by non-expert observers using a mobile app. Methods An on-line videogame in which players learned how to differentiate the young trophozoite stage of the five Plasmodium species has been designed. Images were digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Images from infected red blood cells were cropped and puzzled into an on-line game. During the game, players had to decide the malaria species (Plasmodium falciparum, Plasmodium malariae, Plasmodium vivax, Plasmodium ovale, Plasmodium knowlesi) of the infected cells that were shown in the screen. After 2 months, each player's decisions were analysed individually and collectively. Results On-line volunteers playing the game made more than 500,000 assessments for species differentiation. Statistically, when the choice of several players was combined (n > 25), they were able to significantly discriminate Plasmodium species, reaching a level of accuracy of 99% for all species combinations, except for P. knowlesi (80%). Non-expert decisions on which Plasmodium species was shown in the screen were made in less than 3 s. Conclusion These findings show that it is possible to train malaria-naïve non-experts to identify and differentiate malaria species in digitalized thin blood samples. Although the accuracy of a single player is not perfect, the combination of the responses of multiple casual gamers can achieve an accuracy that is within the range of the diagnostic accuracy made by a trained microscopist. Keywords: Crowdsourcing, Malaria classification, Image analysis, Games for health, Telepathology</abstract><pub>BioMed Central Ltd</pub><doi>10.1186/s12936-019-2662-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-2875 |
ispartof | Malaria Journal, 2019, Vol.18 (1) |
issn | 1475-2875 1475-2875 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A581427718 |
source | Publicly Available Content Database; PubMed Central |
subjects | Blood tests Care and treatment Crowdsourcing Diagnosis Gamers Infection Malaria Medical tests Microscopy Patient outcomes Plasmodium falciparum Public health Risk factors |
title | Collaborative intelligence and gamification for on-line malaria species differentiation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T04%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.atitle=Collaborative%20intelligence%20and%20gamification%20for%20on-line%20malaria%20species%20differentiation&rft.jtitle=Malaria%20Journal&rft.au=Linares,%20Mar%C3%ADa&rft.date=2019-01-24&rft.volume=18&rft.issue=1&rft.issn=1475-2875&rft.eissn=1475-2875&rft_id=info:doi/10.1186/s12936-019-2662-9&rft_dat=%3Cgale%3EA581427718%3C/gale%3E%3Cgrp_id%3Ecdi_FETCH-gale_infotracacademiconefile_A5814277183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A581427718&rfr_iscdi=true |