Loading…
Recharge Estimation Using CMB and Environmental Isotopes in the Verlorenvlei Estuarine System, South Africa and Implications for Groundwater Sustainability in a Semi-Arid Agricultural Region
Groundwater recharge remains one of the most difficult hydrogeological variables to measure accurately, especially for semi-arid environments where the recharge flux is much smaller than in humid conditions. In this study, groundwater recharge was estimated using chloride mass balance (CMB) in the V...
Saved in:
Published in: | Water (Basel) 2020-05, Vol.12 (5), p.1362 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Groundwater recharge remains one of the most difficult hydrogeological variables to measure accurately, especially for semi-arid environments where the recharge flux is much smaller than in humid conditions. In this study, groundwater recharge was estimated using chloride mass balance (CMB) in the Verlorenvlei catchment, South Africa where the effects of recent severe drought conditions in an already semi-arid environment have impacted both agricultural activity as well as the RAMSAR-listed Verlorenvlei estuarine system. Chloride, 18O and 2H tracers were used to improve understanding of the groundwater flow patterns and allowed the fresh parts of the groundwater system, defined by Ca2+-HCO3− groundwater types, to be separated from those where additional salts were being introduced through groundwater mixing, and thus characterized as Na+-Cl− groundwater types. Recharge rates calculated from CMB in the fresh parts of the system were between 4.2–5.6% and 11.4–15.1% of mean annual precipitation for the headwater valley and mountains of the Krom Antonies and are largely consistent with previous studies. However, much lower recharge rates in the valleys where agriculture is dominant contrasts with previous results, which were higher, since groundwater-mixing zones were not recognised. Although the chloride concentration in precipitation is based on only one year of data between 2015 and 2016, where 2015 had on average 28% less precipitation than 2016, the results provide a snapshot of how the system will respond to increasing drought frequency in the future. The results suggest that low rates of groundwater recharge under dry spell conditions will impact on low flow generations which are required to sustain the Verlorenvlei estuarine lake system. Overall, the study highlights the importance of combining hydrochemical tracers such as bulk chloride and stable isotopes with numerical modelling in data-scarce catchments to fully understand the nature of hydrological resilience. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w12051362 |