Loading…

GADE: A Generative Adversarial Approach to Density Estimation and its Applications

Density estimation is a challenging unsupervised learning problem. Current maximum likelihood approaches for density estimation are either restrictive or incapable of producing high-quality samples. On the other hand, likelihood-free models such as generative adversarial networks, produce sharp samp...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer vision 2020-11, Vol.128 (10-11), p.2731-2743
Main Authors: Abbasnejad, M. Ehsan, Shi, Javen, van den Hengel, Anton, Liu, Lingqiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-3fb8ce7edc0a18398bbf106ab817e37cf8a024b20887678a6cec227c6b47c9e03
cites cdi_FETCH-LOGICAL-c364t-3fb8ce7edc0a18398bbf106ab817e37cf8a024b20887678a6cec227c6b47c9e03
container_end_page 2743
container_issue 10-11
container_start_page 2731
container_title International journal of computer vision
container_volume 128
creator Abbasnejad, M. Ehsan
Shi, Javen
van den Hengel, Anton
Liu, Lingqiao
description Density estimation is a challenging unsupervised learning problem. Current maximum likelihood approaches for density estimation are either restrictive or incapable of producing high-quality samples. On the other hand, likelihood-free models such as generative adversarial networks, produce sharp samples without a density model. The lack of a density estimate limits the applications to which the sampled data can be put, however. We propose a generative adversarial density estimator (GADE), a density estimation approach that bridges the gap between the two. Allowing for a prior on the parameters of the model, we extend our density estimator to a Bayesian model where we can leverage the predictive variance to measure our confidence in the likelihood. Our experiments on challenging applications such as visual dialog or autonomous driving where the density and the confidence in predictions are crucial shows the effectiveness of our approach.
doi_str_mv 10.1007/s11263-020-01360-9
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A636368452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A636368452</galeid><sourcerecordid>A636368452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-3fb8ce7edc0a18398bbf106ab817e37cf8a024b20887678a6cec227c6b47c9e03</originalsourceid><addsrcrecordid>eNp9kE1PAyEQQInRxFr9A564etg6wBZYb5u2VpMmJn6cCUtnK6bdbQAb---l1osXMweS4T0SHiHXDEYMQN1GxrgUBXAogAkJRXVCBmysRMFKGJ-SAVT5aiwrdk4uYvwAAK65GJDneT2d3dGazrHDYJPfIa2XOwzRBm_XtN5uQ2_dO009nWIXfdrTWUx-k9G-o7ZbUp_iAVt797OLl-SsteuIV7_nkLzdz14nD8Xiaf44qReFE7JMhWgb7VDh0oFlWlS6aVoG0jaaKRTKtdoCLxsOWiuptJUOHefKyaZUrkIQQzI6vruyazS-a_sUrMuzxI13fYetz_taijy6HPMs3PwRMpPwK63sZ4zm8eX5L8uPrAt9jAFbsw3502FvGJhDcnNMbnJy85PcVFkSRylmuFthMB_9Z-hyhP-sbyJygso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GADE: A Generative Adversarial Approach to Density Estimation and its Applications</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><creator>Abbasnejad, M. Ehsan ; Shi, Javen ; van den Hengel, Anton ; Liu, Lingqiao</creator><creatorcontrib>Abbasnejad, M. Ehsan ; Shi, Javen ; van den Hengel, Anton ; Liu, Lingqiao</creatorcontrib><description>Density estimation is a challenging unsupervised learning problem. Current maximum likelihood approaches for density estimation are either restrictive or incapable of producing high-quality samples. On the other hand, likelihood-free models such as generative adversarial networks, produce sharp samples without a density model. The lack of a density estimate limits the applications to which the sampled data can be put, however. We propose a generative adversarial density estimator (GADE), a density estimation approach that bridges the gap between the two. Allowing for a prior on the parameters of the model, we extend our density estimator to a Bayesian model where we can leverage the predictive variance to measure our confidence in the likelihood. Our experiments on challenging applications such as visual dialog or autonomous driving where the density and the confidence in predictions are crucial shows the effectiveness of our approach.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-020-01360-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Imaging ; Computer Science ; Image Processing and Computer Vision ; Pattern Recognition ; Pattern Recognition and Graphics ; Special Issue on Generative Adversarial Networks for Computer Vision ; Specific gravity ; Technology application ; Vision</subject><ispartof>International journal of computer vision, 2020-11, Vol.128 (10-11), p.2731-2743</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-3fb8ce7edc0a18398bbf106ab817e37cf8a024b20887678a6cec227c6b47c9e03</citedby><cites>FETCH-LOGICAL-c364t-3fb8ce7edc0a18398bbf106ab817e37cf8a024b20887678a6cec227c6b47c9e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abbasnejad, M. Ehsan</creatorcontrib><creatorcontrib>Shi, Javen</creatorcontrib><creatorcontrib>van den Hengel, Anton</creatorcontrib><creatorcontrib>Liu, Lingqiao</creatorcontrib><title>GADE: A Generative Adversarial Approach to Density Estimation and its Applications</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>Density estimation is a challenging unsupervised learning problem. Current maximum likelihood approaches for density estimation are either restrictive or incapable of producing high-quality samples. On the other hand, likelihood-free models such as generative adversarial networks, produce sharp samples without a density model. The lack of a density estimate limits the applications to which the sampled data can be put, however. We propose a generative adversarial density estimator (GADE), a density estimation approach that bridges the gap between the two. Allowing for a prior on the parameters of the model, we extend our density estimator to a Bayesian model where we can leverage the predictive variance to measure our confidence in the likelihood. Our experiments on challenging applications such as visual dialog or autonomous driving where the density and the confidence in predictions are crucial shows the effectiveness of our approach.</description><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Special Issue on Generative Adversarial Networks for Computer Vision</subject><subject>Specific gravity</subject><subject>Technology application</subject><subject>Vision</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQQInRxFr9A564etg6wBZYb5u2VpMmJn6cCUtnK6bdbQAb---l1osXMweS4T0SHiHXDEYMQN1GxrgUBXAogAkJRXVCBmysRMFKGJ-SAVT5aiwrdk4uYvwAAK65GJDneT2d3dGazrHDYJPfIa2XOwzRBm_XtN5uQ2_dO009nWIXfdrTWUx-k9G-o7ZbUp_iAVt797OLl-SsteuIV7_nkLzdz14nD8Xiaf44qReFE7JMhWgb7VDh0oFlWlS6aVoG0jaaKRTKtdoCLxsOWiuptJUOHefKyaZUrkIQQzI6vruyazS-a_sUrMuzxI13fYetz_taijy6HPMs3PwRMpPwK63sZ4zm8eX5L8uPrAt9jAFbsw3502FvGJhDcnNMbnJy85PcVFkSRylmuFthMB_9Z-hyhP-sbyJygso</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Abbasnejad, M. Ehsan</creator><creator>Shi, Javen</creator><creator>van den Hengel, Anton</creator><creator>Liu, Lingqiao</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20201101</creationdate><title>GADE: A Generative Adversarial Approach to Density Estimation and its Applications</title><author>Abbasnejad, M. Ehsan ; Shi, Javen ; van den Hengel, Anton ; Liu, Lingqiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-3fb8ce7edc0a18398bbf106ab817e37cf8a024b20887678a6cec227c6b47c9e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Special Issue on Generative Adversarial Networks for Computer Vision</topic><topic>Specific gravity</topic><topic>Technology application</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbasnejad, M. Ehsan</creatorcontrib><creatorcontrib>Shi, Javen</creatorcontrib><creatorcontrib>van den Hengel, Anton</creatorcontrib><creatorcontrib>Liu, Lingqiao</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbasnejad, M. Ehsan</au><au>Shi, Javen</au><au>van den Hengel, Anton</au><au>Liu, Lingqiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GADE: A Generative Adversarial Approach to Density Estimation and its Applications</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>128</volume><issue>10-11</issue><spage>2731</spage><epage>2743</epage><pages>2731-2743</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>Density estimation is a challenging unsupervised learning problem. Current maximum likelihood approaches for density estimation are either restrictive or incapable of producing high-quality samples. On the other hand, likelihood-free models such as generative adversarial networks, produce sharp samples without a density model. The lack of a density estimate limits the applications to which the sampled data can be put, however. We propose a generative adversarial density estimator (GADE), a density estimation approach that bridges the gap between the two. Allowing for a prior on the parameters of the model, we extend our density estimator to a Bayesian model where we can leverage the predictive variance to measure our confidence in the likelihood. Our experiments on challenging applications such as visual dialog or autonomous driving where the density and the confidence in predictions are crucial shows the effectiveness of our approach.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11263-020-01360-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-5691
ispartof International journal of computer vision, 2020-11, Vol.128 (10-11), p.2731-2743
issn 0920-5691
1573-1405
language eng
recordid cdi_gale_infotracacademiconefile_A636368452
source ABI/INFORM Global (ProQuest); Springer Link
subjects Artificial Intelligence
Computer Imaging
Computer Science
Image Processing and Computer Vision
Pattern Recognition
Pattern Recognition and Graphics
Special Issue on Generative Adversarial Networks for Computer Vision
Specific gravity
Technology application
Vision
title GADE: A Generative Adversarial Approach to Density Estimation and its Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GADE:%20A%20Generative%20Adversarial%20Approach%20to%20Density%20Estimation%20and%20its%20Applications&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Abbasnejad,%20M.%20Ehsan&rft.date=2020-11-01&rft.volume=128&rft.issue=10-11&rft.spage=2731&rft.epage=2743&rft.pages=2731-2743&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-020-01360-9&rft_dat=%3Cgale_cross%3EA636368452%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-3fb8ce7edc0a18398bbf106ab817e37cf8a024b20887678a6cec227c6b47c9e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A636368452&rfr_iscdi=true