Loading…

Analysis of dynamic stability of beam structures

This paper presents two numerical models (Model L and Model N) and its application in the analysis of dynamic stability of beam-type structures. Both numerical models use two-noded rotation-free finite elements and take into account the exact formulation for finite displacement, finite rotations, an...

Full description

Saved in:
Bibliographic Details
Published in:Acta mechanica 2020-11, Vol.231 (11), p.4701-4715
Main Authors: Smoljanović, Hrvoje, Balić, Ivan, Munjiza, Ante, Akmadžić, Vlaho, Trogrlić, Boris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413
cites cdi_FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413
container_end_page 4715
container_issue 11
container_start_page 4701
container_title Acta mechanica
container_volume 231
creator Smoljanović, Hrvoje
Balić, Ivan
Munjiza, Ante
Akmadžić, Vlaho
Trogrlić, Boris
description This paper presents two numerical models (Model L and Model N) and its application in the analysis of dynamic stability of beam-type structures. Both numerical models use two-noded rotation-free finite elements and take into account the exact formulation for finite displacement, finite rotations, and finite strains. Model L was previously developed and is intended for linear elastic material behavior, whereas Model N is newly developed, considers laminar cross sections, and takes into account the nonlinear material behavior. Both models have been implemented into the open-source finite discrete element package Y-FDEM. Performance and conditions under which both numerical models can be used for the analysis of dynamic stability are presented by numerical examples which show good agreement in comparison with the analytical solutions.
doi_str_mv 10.1007/s00707-020-02793-6
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A638342158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638342158</galeid><sourcerecordid>A638342158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413</originalsourceid><addsrcrecordid>eNp9kNtqAyEQhqW00DTtC_QqL2A66q6HyxB6gkBvci-uq8Gwh6Kbi337Trq9LjKKP_MNw0fIM4MtA1AvBS9QFDhgKSOovCErJpmh0gh1S1YAwGhtFNyTh1LO-OOqYisCu8F1c0llM8ZNOw-uT35TJtekLk3zNWyC6zHJFz9dciiP5C66roSnv3dNjm-vx_0HPXy9f-53B-qFgImqpja8kdJ5GU2tufK-aSttZFAgGh6i9lxIw3DrtjWq9kFFJoTWxoe2YmJNtsvYk-uCTUMcp-w8njbghuMQYsJ8J4UWFWe1RoAvgM9jKTlE-51T7_JsGdirI7s4sujI_jqyEiGxQAWbh1PI9jxeMhop_1E_bixo1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of dynamic stability of beam structures</title><source>Springer Link</source><creator>Smoljanović, Hrvoje ; Balić, Ivan ; Munjiza, Ante ; Akmadžić, Vlaho ; Trogrlić, Boris</creator><creatorcontrib>Smoljanović, Hrvoje ; Balić, Ivan ; Munjiza, Ante ; Akmadžić, Vlaho ; Trogrlić, Boris</creatorcontrib><description>This paper presents two numerical models (Model L and Model N) and its application in the analysis of dynamic stability of beam-type structures. Both numerical models use two-noded rotation-free finite elements and take into account the exact formulation for finite displacement, finite rotations, and finite strains. Model L was previously developed and is intended for linear elastic material behavior, whereas Model N is newly developed, considers laminar cross sections, and takes into account the nonlinear material behavior. Both models have been implemented into the open-source finite discrete element package Y-FDEM. Performance and conditions under which both numerical models can be used for the analysis of dynamic stability are presented by numerical examples which show good agreement in comparison with the analytical solutions.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-020-02793-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Classical and Continuum Physics ; Control ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Original Paper ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2020-11, Vol.231 (11), p.4701-4715</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413</citedby><cites>FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413</cites><orcidid>0000-0003-2409-8025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Smoljanović, Hrvoje</creatorcontrib><creatorcontrib>Balić, Ivan</creatorcontrib><creatorcontrib>Munjiza, Ante</creatorcontrib><creatorcontrib>Akmadžić, Vlaho</creatorcontrib><creatorcontrib>Trogrlić, Boris</creatorcontrib><title>Analysis of dynamic stability of beam structures</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>This paper presents two numerical models (Model L and Model N) and its application in the analysis of dynamic stability of beam-type structures. Both numerical models use two-noded rotation-free finite elements and take into account the exact formulation for finite displacement, finite rotations, and finite strains. Model L was previously developed and is intended for linear elastic material behavior, whereas Model N is newly developed, considers laminar cross sections, and takes into account the nonlinear material behavior. Both models have been implemented into the open-source finite discrete element package Y-FDEM. Performance and conditions under which both numerical models can be used for the analysis of dynamic stability are presented by numerical examples which show good agreement in comparison with the analytical solutions.</description><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Original Paper</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kNtqAyEQhqW00DTtC_QqL2A66q6HyxB6gkBvci-uq8Gwh6Kbi337Trq9LjKKP_MNw0fIM4MtA1AvBS9QFDhgKSOovCErJpmh0gh1S1YAwGhtFNyTh1LO-OOqYisCu8F1c0llM8ZNOw-uT35TJtekLk3zNWyC6zHJFz9dciiP5C66roSnv3dNjm-vx_0HPXy9f-53B-qFgImqpja8kdJ5GU2tufK-aSttZFAgGh6i9lxIw3DrtjWq9kFFJoTWxoe2YmJNtsvYk-uCTUMcp-w8njbghuMQYsJ8J4UWFWe1RoAvgM9jKTlE-51T7_JsGdirI7s4sujI_jqyEiGxQAWbh1PI9jxeMhop_1E_bixo1w</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Smoljanović, Hrvoje</creator><creator>Balić, Ivan</creator><creator>Munjiza, Ante</creator><creator>Akmadžić, Vlaho</creator><creator>Trogrlić, Boris</creator><general>Springer Vienna</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2409-8025</orcidid></search><sort><creationdate>20201101</creationdate><title>Analysis of dynamic stability of beam structures</title><author>Smoljanović, Hrvoje ; Balić, Ivan ; Munjiza, Ante ; Akmadžić, Vlaho ; Trogrlić, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Original Paper</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smoljanović, Hrvoje</creatorcontrib><creatorcontrib>Balić, Ivan</creatorcontrib><creatorcontrib>Munjiza, Ante</creatorcontrib><creatorcontrib>Akmadžić, Vlaho</creatorcontrib><creatorcontrib>Trogrlić, Boris</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smoljanović, Hrvoje</au><au>Balić, Ivan</au><au>Munjiza, Ante</au><au>Akmadžić, Vlaho</au><au>Trogrlić, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of dynamic stability of beam structures</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>231</volume><issue>11</issue><spage>4701</spage><epage>4715</epage><pages>4701-4715</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>This paper presents two numerical models (Model L and Model N) and its application in the analysis of dynamic stability of beam-type structures. Both numerical models use two-noded rotation-free finite elements and take into account the exact formulation for finite displacement, finite rotations, and finite strains. Model L was previously developed and is intended for linear elastic material behavior, whereas Model N is newly developed, considers laminar cross sections, and takes into account the nonlinear material behavior. Both models have been implemented into the open-source finite discrete element package Y-FDEM. Performance and conditions under which both numerical models can be used for the analysis of dynamic stability are presented by numerical examples which show good agreement in comparison with the analytical solutions.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-020-02793-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2409-8025</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2020-11, Vol.231 (11), p.4701-4715
issn 0001-5970
1619-6937
language eng
recordid cdi_gale_infotracacademiconefile_A638342158
source Springer Link
subjects Classical and Continuum Physics
Control
Dynamical Systems
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Heat and Mass Transfer
Original Paper
Solid Mechanics
Theoretical and Applied Mechanics
Vibration
title Analysis of dynamic stability of beam structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20dynamic%20stability%20of%20beam%20structures&rft.jtitle=Acta%20mechanica&rft.au=Smoljanovi%C4%87,%20Hrvoje&rft.date=2020-11-01&rft.volume=231&rft.issue=11&rft.spage=4701&rft.epage=4715&rft.pages=4701-4715&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-020-02793-6&rft_dat=%3Cgale_cross%3EA638342158%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A638342158&rfr_iscdi=true