Loading…
Analysis of dynamic stability of beam structures
This paper presents two numerical models (Model L and Model N) and its application in the analysis of dynamic stability of beam-type structures. Both numerical models use two-noded rotation-free finite elements and take into account the exact formulation for finite displacement, finite rotations, an...
Saved in:
Published in: | Acta mechanica 2020-11, Vol.231 (11), p.4701-4715 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413 |
---|---|
cites | cdi_FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413 |
container_end_page | 4715 |
container_issue | 11 |
container_start_page | 4701 |
container_title | Acta mechanica |
container_volume | 231 |
creator | Smoljanović, Hrvoje Balić, Ivan Munjiza, Ante Akmadžić, Vlaho Trogrlić, Boris |
description | This paper presents two numerical models (Model L and Model N) and its application in the analysis of dynamic stability of beam-type structures. Both numerical models use two-noded rotation-free finite elements and take into account the exact formulation for finite displacement, finite rotations, and finite strains. Model L was previously developed and is intended for linear elastic material behavior, whereas Model N is newly developed, considers laminar cross sections, and takes into account the nonlinear material behavior. Both models have been implemented into the open-source finite discrete element package Y-FDEM. Performance and conditions under which both numerical models can be used for the analysis of dynamic stability are presented by numerical examples which show good agreement in comparison with the analytical solutions. |
doi_str_mv | 10.1007/s00707-020-02793-6 |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A638342158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638342158</galeid><sourcerecordid>A638342158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413</originalsourceid><addsrcrecordid>eNp9kNtqAyEQhqW00DTtC_QqL2A66q6HyxB6gkBvci-uq8Gwh6Kbi337Trq9LjKKP_MNw0fIM4MtA1AvBS9QFDhgKSOovCErJpmh0gh1S1YAwGhtFNyTh1LO-OOqYisCu8F1c0llM8ZNOw-uT35TJtekLk3zNWyC6zHJFz9dciiP5C66roSnv3dNjm-vx_0HPXy9f-53B-qFgImqpja8kdJ5GU2tufK-aSttZFAgGh6i9lxIw3DrtjWq9kFFJoTWxoe2YmJNtsvYk-uCTUMcp-w8njbghuMQYsJ8J4UWFWe1RoAvgM9jKTlE-51T7_JsGdirI7s4sujI_jqyEiGxQAWbh1PI9jxeMhop_1E_bixo1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of dynamic stability of beam structures</title><source>Springer Link</source><creator>Smoljanović, Hrvoje ; Balić, Ivan ; Munjiza, Ante ; Akmadžić, Vlaho ; Trogrlić, Boris</creator><creatorcontrib>Smoljanović, Hrvoje ; Balić, Ivan ; Munjiza, Ante ; Akmadžić, Vlaho ; Trogrlić, Boris</creatorcontrib><description>This paper presents two numerical models (Model L and Model N) and its application in the analysis of dynamic stability of beam-type structures. Both numerical models use two-noded rotation-free finite elements and take into account the exact formulation for finite displacement, finite rotations, and finite strains. Model L was previously developed and is intended for linear elastic material behavior, whereas Model N is newly developed, considers laminar cross sections, and takes into account the nonlinear material behavior. Both models have been implemented into the open-source finite discrete element package Y-FDEM. Performance and conditions under which both numerical models can be used for the analysis of dynamic stability are presented by numerical examples which show good agreement in comparison with the analytical solutions.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-020-02793-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Classical and Continuum Physics ; Control ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Original Paper ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2020-11, Vol.231 (11), p.4701-4715</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413</citedby><cites>FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413</cites><orcidid>0000-0003-2409-8025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Smoljanović, Hrvoje</creatorcontrib><creatorcontrib>Balić, Ivan</creatorcontrib><creatorcontrib>Munjiza, Ante</creatorcontrib><creatorcontrib>Akmadžić, Vlaho</creatorcontrib><creatorcontrib>Trogrlić, Boris</creatorcontrib><title>Analysis of dynamic stability of beam structures</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>This paper presents two numerical models (Model L and Model N) and its application in the analysis of dynamic stability of beam-type structures. Both numerical models use two-noded rotation-free finite elements and take into account the exact formulation for finite displacement, finite rotations, and finite strains. Model L was previously developed and is intended for linear elastic material behavior, whereas Model N is newly developed, considers laminar cross sections, and takes into account the nonlinear material behavior. Both models have been implemented into the open-source finite discrete element package Y-FDEM. Performance and conditions under which both numerical models can be used for the analysis of dynamic stability are presented by numerical examples which show good agreement in comparison with the analytical solutions.</description><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Original Paper</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kNtqAyEQhqW00DTtC_QqL2A66q6HyxB6gkBvci-uq8Gwh6Kbi337Trq9LjKKP_MNw0fIM4MtA1AvBS9QFDhgKSOovCErJpmh0gh1S1YAwGhtFNyTh1LO-OOqYisCu8F1c0llM8ZNOw-uT35TJtekLk3zNWyC6zHJFz9dciiP5C66roSnv3dNjm-vx_0HPXy9f-53B-qFgImqpja8kdJ5GU2tufK-aSttZFAgGh6i9lxIw3DrtjWq9kFFJoTWxoe2YmJNtsvYk-uCTUMcp-w8njbghuMQYsJ8J4UWFWe1RoAvgM9jKTlE-51T7_JsGdirI7s4sujI_jqyEiGxQAWbh1PI9jxeMhop_1E_bixo1w</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Smoljanović, Hrvoje</creator><creator>Balić, Ivan</creator><creator>Munjiza, Ante</creator><creator>Akmadžić, Vlaho</creator><creator>Trogrlić, Boris</creator><general>Springer Vienna</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2409-8025</orcidid></search><sort><creationdate>20201101</creationdate><title>Analysis of dynamic stability of beam structures</title><author>Smoljanović, Hrvoje ; Balić, Ivan ; Munjiza, Ante ; Akmadžić, Vlaho ; Trogrlić, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Original Paper</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smoljanović, Hrvoje</creatorcontrib><creatorcontrib>Balić, Ivan</creatorcontrib><creatorcontrib>Munjiza, Ante</creatorcontrib><creatorcontrib>Akmadžić, Vlaho</creatorcontrib><creatorcontrib>Trogrlić, Boris</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smoljanović, Hrvoje</au><au>Balić, Ivan</au><au>Munjiza, Ante</au><au>Akmadžić, Vlaho</au><au>Trogrlić, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of dynamic stability of beam structures</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>231</volume><issue>11</issue><spage>4701</spage><epage>4715</epage><pages>4701-4715</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>This paper presents two numerical models (Model L and Model N) and its application in the analysis of dynamic stability of beam-type structures. Both numerical models use two-noded rotation-free finite elements and take into account the exact formulation for finite displacement, finite rotations, and finite strains. Model L was previously developed and is intended for linear elastic material behavior, whereas Model N is newly developed, considers laminar cross sections, and takes into account the nonlinear material behavior. Both models have been implemented into the open-source finite discrete element package Y-FDEM. Performance and conditions under which both numerical models can be used for the analysis of dynamic stability are presented by numerical examples which show good agreement in comparison with the analytical solutions.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-020-02793-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2409-8025</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2020-11, Vol.231 (11), p.4701-4715 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A638342158 |
source | Springer Link |
subjects | Classical and Continuum Physics Control Dynamical Systems Engineering Engineering Fluid Dynamics Engineering Thermodynamics Heat and Mass Transfer Original Paper Solid Mechanics Theoretical and Applied Mechanics Vibration |
title | Analysis of dynamic stability of beam structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20dynamic%20stability%20of%20beam%20structures&rft.jtitle=Acta%20mechanica&rft.au=Smoljanovi%C4%87,%20Hrvoje&rft.date=2020-11-01&rft.volume=231&rft.issue=11&rft.spage=4701&rft.epage=4715&rft.pages=4701-4715&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-020-02793-6&rft_dat=%3Cgale_cross%3EA638342158%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-7b592b66ac6f95827ccbd4896e703b2ef8c23691707dd975ce7f133889ced413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A638342158&rfr_iscdi=true |