Loading…

Chronic intermittent hypobaric hypoxia attenuates ischemic limb injury by promoting angiogenesis in mice

This study aimed to evaluate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against limb ischemic injury. C57BL/6 mice were randomly divided into three groups: limb ischemic injury group (Ischemia, induced by ligation and excision of the left femoral artery), limb ischemia fo...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of physiology and pharmacology 2021-11, Vol.99 (11), p.1191-1198
Main Authors: Tian, Yanming, Zhang, Li, Guo, Xinqi, Gao, Zheng, Zhang, Yi, Zhang, Liping, Hou, Zhiyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c520t-5f58f07350adc161f895cf3a5c67fc65ff8fe159ead28e73a826d87fadf5efb53
container_end_page 1198
container_issue 11
container_start_page 1191
container_title Canadian journal of physiology and pharmacology
container_volume 99
creator Tian, Yanming
Zhang, Li
Guo, Xinqi
Gao, Zheng
Zhang, Yi
Zhang, Liping
Hou, Zhiyong
description This study aimed to evaluate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against limb ischemic injury. C57BL/6 mice were randomly divided into three groups: limb ischemic injury group (Ischemia, induced by ligation and excision of the left femoral artery), limb ischemia following CIHH pretreatment group (CIHH+Ischemia, simulated a 5000 m altitude hypoxia, 6 h per day for 28 days, before induction of hind-limb ischemia), and sham group (Sham). The blood flow in the mouse models of hind-limb ischemia was examined using laser doppler imaging. The functional and morphological performance of ischemic muscle was evaluated using contraction force and hematoxylin–eosin and Masson’s trichrome staining. Angiogenesis was determined by immunohistochemistry staining of the endothelial markers CD31 and CD34. The protein expressions of angiogenesis-related genes were detected using Western blot assay. Chronic ischemia resulted in reduced blood perfusion, decreased contraction tension, and morphological destruction in gastrocnemius muscle. CIHH pretreatment increased the contractile force and muscle fiber diameter and decreased necrosis and fibrosis of the ischemic muscle. Also, CIHH significantly increased the density of CD31 + and CD34 + cells and promoted the expression of angiogenesis-related molecules in ischemic muscle. These data demonstrate that CIHH has a protective effect against chronic limb ischemia by promoting angiogenesis.
doi_str_mv 10.1139/cjpp-2021-0047
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A684482232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684482232</galeid><sourcerecordid>A684482232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-5f58f07350adc161f895cf3a5c67fc65ff8fe159ead28e73a826d87fadf5efb53</originalsourceid><addsrcrecordid>eNqV0str3DAQB2BTWppN2muPxbSX9OBUD8uWj2HpIxBa6OMsZHlka7ElR5Ih-99XJtvHloVSfLAtfTMMwy_LXmB0hTFt3qrdPBcEEVwgVNaPsg0miBU1K_HjbIMQ4kVJMDnLzkPYpd-KU_40O6Mlbuqa4E02bAfvrFG5sRH8ZGIEG_NhP7tW-nS8ft0bmcv1YpERQm6CGmBKd6OZ2lS3W_w-b_f57N3korF9Lm1vXA8Wgknc5gnDs-yJlmOA54f3Rfb9_btv24_F7ecPN9vr20IxgmLBNOMa1ZQh2SlcYc0bpjSVTFW1VhXTmmvArAHZEQ41lZxUHa-17DQD3TJ6kV0-9E3j3C0QopjSwDCO0oJbgiCs5CXGVUUTff0X3bnF2zRdUg1lVU2b8rfq5QjCWO2il2ptKq4rXpacEEqSKk6odQdejs6CNun4yL864dVs7sSf6OoESk-37v9k1zdHBclEuI-9XEIQN1-__If9dGwPgyjvQvCgxezNJP1eYCTWHIo1h2LNoVhzmApeHla7tBN0v_jP4CWAH4D1ykMA6dXwr6Y_ACP05p0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593567394</pqid></control><display><type>article</type><title>Chronic intermittent hypobaric hypoxia attenuates ischemic limb injury by promoting angiogenesis in mice</title><source>SPORTDiscus database</source><creator>Tian, Yanming ; Zhang, Li ; Guo, Xinqi ; Gao, Zheng ; Zhang, Yi ; Zhang, Liping ; Hou, Zhiyong</creator><creatorcontrib>Tian, Yanming ; Zhang, Li ; Guo, Xinqi ; Gao, Zheng ; Zhang, Yi ; Zhang, Liping ; Hou, Zhiyong</creatorcontrib><description>This study aimed to evaluate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against limb ischemic injury. C57BL/6 mice were randomly divided into three groups: limb ischemic injury group (Ischemia, induced by ligation and excision of the left femoral artery), limb ischemia following CIHH pretreatment group (CIHH+Ischemia, simulated a 5000 m altitude hypoxia, 6 h per day for 28 days, before induction of hind-limb ischemia), and sham group (Sham). The blood flow in the mouse models of hind-limb ischemia was examined using laser doppler imaging. The functional and morphological performance of ischemic muscle was evaluated using contraction force and hematoxylin–eosin and Masson’s trichrome staining. Angiogenesis was determined by immunohistochemistry staining of the endothelial markers CD31 and CD34. The protein expressions of angiogenesis-related genes were detected using Western blot assay. Chronic ischemia resulted in reduced blood perfusion, decreased contraction tension, and morphological destruction in gastrocnemius muscle. CIHH pretreatment increased the contractile force and muscle fiber diameter and decreased necrosis and fibrosis of the ischemic muscle. Also, CIHH significantly increased the density of CD31 + and CD34 + cells and promoted the expression of angiogenesis-related molecules in ischemic muscle. These data demonstrate that CIHH has a protective effect against chronic limb ischemia by promoting angiogenesis.</description><identifier>ISSN: 0008-4212</identifier><identifier>EISSN: 1205-7541</identifier><identifier>DOI: 10.1139/cjpp-2021-0047</identifier><identifier>PMID: 34197721</identifier><language>eng</language><publisher>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7: NRC Research Press</publisher><subject>Altitude ; Angiogenesis ; angiogenèse ; Animal models ; Animals ; Antigens, CD34 ; Blood flow ; Care and treatment ; CD34 antigen ; chronic intermittent hypobaric hypoxia ; Contraction ; Disease Models, Animal ; Doppler effect ; Extremities (Anatomy) ; Femoral artery ; Fibrosis ; Gastrocnemius muscle ; Health aspects ; HIF1α ; hind-limb ischemia ; Hindlimb - blood supply ; Hypoxia ; Hypoxia - physiopathology ; hypoxia inducible factor 1α ; Hypoxia-Inducible Factor 1, alpha Subunit ; hypoxie intermittente chronique hypobarique ; Immunohistochemistry ; Ischemia ; Ischemia - physiopathology ; Ischemia - therapy ; ischémie dans une patte postérieure ; Male ; Mice ; Mice, Inbred C57BL ; Morphology ; Muscle Contraction ; muscle squelettique ; Muscle, Skeletal - pathology ; Muscle, Skeletal - physiopathology ; Neovascularization ; Neovascularization, Physiologic - genetics ; Occlusion ; Perfusion ; Platelet Endothelial Cell Adhesion Molecule-1 ; skeletal muscle</subject><ispartof>Canadian journal of physiology and pharmacology, 2021-11, Vol.99 (11), p.1191-1198</ispartof><rights>COPYRIGHT 2021 NRC Research Press</rights><rights>2021 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c520t-5f58f07350adc161f895cf3a5c67fc65ff8fe159ead28e73a826d87fadf5efb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34197721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Yanming</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Guo, Xinqi</creatorcontrib><creatorcontrib>Gao, Zheng</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>Hou, Zhiyong</creatorcontrib><title>Chronic intermittent hypobaric hypoxia attenuates ischemic limb injury by promoting angiogenesis in mice</title><title>Canadian journal of physiology and pharmacology</title><addtitle>Can J Physiol Pharmacol</addtitle><description>This study aimed to evaluate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against limb ischemic injury. C57BL/6 mice were randomly divided into three groups: limb ischemic injury group (Ischemia, induced by ligation and excision of the left femoral artery), limb ischemia following CIHH pretreatment group (CIHH+Ischemia, simulated a 5000 m altitude hypoxia, 6 h per day for 28 days, before induction of hind-limb ischemia), and sham group (Sham). The blood flow in the mouse models of hind-limb ischemia was examined using laser doppler imaging. The functional and morphological performance of ischemic muscle was evaluated using contraction force and hematoxylin–eosin and Masson’s trichrome staining. Angiogenesis was determined by immunohistochemistry staining of the endothelial markers CD31 and CD34. The protein expressions of angiogenesis-related genes were detected using Western blot assay. Chronic ischemia resulted in reduced blood perfusion, decreased contraction tension, and morphological destruction in gastrocnemius muscle. CIHH pretreatment increased the contractile force and muscle fiber diameter and decreased necrosis and fibrosis of the ischemic muscle. Also, CIHH significantly increased the density of CD31 + and CD34 + cells and promoted the expression of angiogenesis-related molecules in ischemic muscle. These data demonstrate that CIHH has a protective effect against chronic limb ischemia by promoting angiogenesis.</description><subject>Altitude</subject><subject>Angiogenesis</subject><subject>angiogenèse</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antigens, CD34</subject><subject>Blood flow</subject><subject>Care and treatment</subject><subject>CD34 antigen</subject><subject>chronic intermittent hypobaric hypoxia</subject><subject>Contraction</subject><subject>Disease Models, Animal</subject><subject>Doppler effect</subject><subject>Extremities (Anatomy)</subject><subject>Femoral artery</subject><subject>Fibrosis</subject><subject>Gastrocnemius muscle</subject><subject>Health aspects</subject><subject>HIF1α</subject><subject>hind-limb ischemia</subject><subject>Hindlimb - blood supply</subject><subject>Hypoxia</subject><subject>Hypoxia - physiopathology</subject><subject>hypoxia inducible factor 1α</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit</subject><subject>hypoxie intermittente chronique hypobarique</subject><subject>Immunohistochemistry</subject><subject>Ischemia</subject><subject>Ischemia - physiopathology</subject><subject>Ischemia - therapy</subject><subject>ischémie dans une patte postérieure</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Morphology</subject><subject>Muscle Contraction</subject><subject>muscle squelettique</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscle, Skeletal - physiopathology</subject><subject>Neovascularization</subject><subject>Neovascularization, Physiologic - genetics</subject><subject>Occlusion</subject><subject>Perfusion</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1</subject><subject>skeletal muscle</subject><issn>0008-4212</issn><issn>1205-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqV0str3DAQB2BTWppN2muPxbSX9OBUD8uWj2HpIxBa6OMsZHlka7ElR5Ih-99XJtvHloVSfLAtfTMMwy_LXmB0hTFt3qrdPBcEEVwgVNaPsg0miBU1K_HjbIMQ4kVJMDnLzkPYpd-KU_40O6Mlbuqa4E02bAfvrFG5sRH8ZGIEG_NhP7tW-nS8ft0bmcv1YpERQm6CGmBKd6OZ2lS3W_w-b_f57N3korF9Lm1vXA8Wgknc5gnDs-yJlmOA54f3Rfb9_btv24_F7ecPN9vr20IxgmLBNOMa1ZQh2SlcYc0bpjSVTFW1VhXTmmvArAHZEQ41lZxUHa-17DQD3TJ6kV0-9E3j3C0QopjSwDCO0oJbgiCs5CXGVUUTff0X3bnF2zRdUg1lVU2b8rfq5QjCWO2il2ptKq4rXpacEEqSKk6odQdejs6CNun4yL864dVs7sSf6OoESk-37v9k1zdHBclEuI-9XEIQN1-__If9dGwPgyjvQvCgxezNJP1eYCTWHIo1h2LNoVhzmApeHla7tBN0v_jP4CWAH4D1ykMA6dXwr6Y_ACP05p0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Tian, Yanming</creator><creator>Zhang, Li</creator><creator>Guo, Xinqi</creator><creator>Gao, Zheng</creator><creator>Zhang, Yi</creator><creator>Zhang, Liping</creator><creator>Hou, Zhiyong</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20211101</creationdate><title>Chronic intermittent hypobaric hypoxia attenuates ischemic limb injury by promoting angiogenesis in mice</title><author>Tian, Yanming ; Zhang, Li ; Guo, Xinqi ; Gao, Zheng ; Zhang, Yi ; Zhang, Liping ; Hou, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-5f58f07350adc161f895cf3a5c67fc65ff8fe159ead28e73a826d87fadf5efb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Altitude</topic><topic>Angiogenesis</topic><topic>angiogenèse</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antigens, CD34</topic><topic>Blood flow</topic><topic>Care and treatment</topic><topic>CD34 antigen</topic><topic>chronic intermittent hypobaric hypoxia</topic><topic>Contraction</topic><topic>Disease Models, Animal</topic><topic>Doppler effect</topic><topic>Extremities (Anatomy)</topic><topic>Femoral artery</topic><topic>Fibrosis</topic><topic>Gastrocnemius muscle</topic><topic>Health aspects</topic><topic>HIF1α</topic><topic>hind-limb ischemia</topic><topic>Hindlimb - blood supply</topic><topic>Hypoxia</topic><topic>Hypoxia - physiopathology</topic><topic>hypoxia inducible factor 1α</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit</topic><topic>hypoxie intermittente chronique hypobarique</topic><topic>Immunohistochemistry</topic><topic>Ischemia</topic><topic>Ischemia - physiopathology</topic><topic>Ischemia - therapy</topic><topic>ischémie dans une patte postérieure</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Morphology</topic><topic>Muscle Contraction</topic><topic>muscle squelettique</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscle, Skeletal - physiopathology</topic><topic>Neovascularization</topic><topic>Neovascularization, Physiologic - genetics</topic><topic>Occlusion</topic><topic>Perfusion</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1</topic><topic>skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yanming</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Guo, Xinqi</creatorcontrib><creatorcontrib>Gao, Zheng</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>Hou, Zhiyong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Canadian journal of physiology and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yanming</au><au>Zhang, Li</au><au>Guo, Xinqi</au><au>Gao, Zheng</au><au>Zhang, Yi</au><au>Zhang, Liping</au><au>Hou, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chronic intermittent hypobaric hypoxia attenuates ischemic limb injury by promoting angiogenesis in mice</atitle><jtitle>Canadian journal of physiology and pharmacology</jtitle><addtitle>Can J Physiol Pharmacol</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>99</volume><issue>11</issue><spage>1191</spage><epage>1198</epage><pages>1191-1198</pages><issn>0008-4212</issn><eissn>1205-7541</eissn><abstract>This study aimed to evaluate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against limb ischemic injury. C57BL/6 mice were randomly divided into three groups: limb ischemic injury group (Ischemia, induced by ligation and excision of the left femoral artery), limb ischemia following CIHH pretreatment group (CIHH+Ischemia, simulated a 5000 m altitude hypoxia, 6 h per day for 28 days, before induction of hind-limb ischemia), and sham group (Sham). The blood flow in the mouse models of hind-limb ischemia was examined using laser doppler imaging. The functional and morphological performance of ischemic muscle was evaluated using contraction force and hematoxylin–eosin and Masson’s trichrome staining. Angiogenesis was determined by immunohistochemistry staining of the endothelial markers CD31 and CD34. The protein expressions of angiogenesis-related genes were detected using Western blot assay. Chronic ischemia resulted in reduced blood perfusion, decreased contraction tension, and morphological destruction in gastrocnemius muscle. CIHH pretreatment increased the contractile force and muscle fiber diameter and decreased necrosis and fibrosis of the ischemic muscle. Also, CIHH significantly increased the density of CD31 + and CD34 + cells and promoted the expression of angiogenesis-related molecules in ischemic muscle. These data demonstrate that CIHH has a protective effect against chronic limb ischemia by promoting angiogenesis.</abstract><cop>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7</cop><pub>NRC Research Press</pub><pmid>34197721</pmid><doi>10.1139/cjpp-2021-0047</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-4212
ispartof Canadian journal of physiology and pharmacology, 2021-11, Vol.99 (11), p.1191-1198
issn 0008-4212
1205-7541
language eng
recordid cdi_gale_infotracacademiconefile_A684482232
source SPORTDiscus database
subjects Altitude
Angiogenesis
angiogenèse
Animal models
Animals
Antigens, CD34
Blood flow
Care and treatment
CD34 antigen
chronic intermittent hypobaric hypoxia
Contraction
Disease Models, Animal
Doppler effect
Extremities (Anatomy)
Femoral artery
Fibrosis
Gastrocnemius muscle
Health aspects
HIF1α
hind-limb ischemia
Hindlimb - blood supply
Hypoxia
Hypoxia - physiopathology
hypoxia inducible factor 1α
Hypoxia-Inducible Factor 1, alpha Subunit
hypoxie intermittente chronique hypobarique
Immunohistochemistry
Ischemia
Ischemia - physiopathology
Ischemia - therapy
ischémie dans une patte postérieure
Male
Mice
Mice, Inbred C57BL
Morphology
Muscle Contraction
muscle squelettique
Muscle, Skeletal - pathology
Muscle, Skeletal - physiopathology
Neovascularization
Neovascularization, Physiologic - genetics
Occlusion
Perfusion
Platelet Endothelial Cell Adhesion Molecule-1
skeletal muscle
title Chronic intermittent hypobaric hypoxia attenuates ischemic limb injury by promoting angiogenesis in mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chronic%20intermittent%20hypobaric%20hypoxia%20attenuates%20ischemic%20limb%20injury%20by%20promoting%20angiogenesis%20in%20mice&rft.jtitle=Canadian%20journal%20of%20physiology%20and%20pharmacology&rft.au=Tian,%20Yanming&rft.date=2021-11-01&rft.volume=99&rft.issue=11&rft.spage=1191&rft.epage=1198&rft.pages=1191-1198&rft.issn=0008-4212&rft.eissn=1205-7541&rft_id=info:doi/10.1139/cjpp-2021-0047&rft_dat=%3Cgale_proqu%3EA684482232%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-5f58f07350adc161f895cf3a5c67fc65ff8fe159ead28e73a826d87fadf5efb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593567394&rft_id=info:pmid/34197721&rft_galeid=A684482232&rfr_iscdi=true