Loading…
Chronic intermittent hypobaric hypoxia attenuates ischemic limb injury by promoting angiogenesis in mice
This study aimed to evaluate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against limb ischemic injury. C57BL/6 mice were randomly divided into three groups: limb ischemic injury group (Ischemia, induced by ligation and excision of the left femoral artery), limb ischemia fo...
Saved in:
Published in: | Canadian journal of physiology and pharmacology 2021-11, Vol.99 (11), p.1191-1198 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c520t-5f58f07350adc161f895cf3a5c67fc65ff8fe159ead28e73a826d87fadf5efb53 |
container_end_page | 1198 |
container_issue | 11 |
container_start_page | 1191 |
container_title | Canadian journal of physiology and pharmacology |
container_volume | 99 |
creator | Tian, Yanming Zhang, Li Guo, Xinqi Gao, Zheng Zhang, Yi Zhang, Liping Hou, Zhiyong |
description | This study aimed to evaluate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against limb ischemic injury. C57BL/6 mice were randomly divided into three groups: limb ischemic injury group (Ischemia, induced by ligation and excision of the left femoral artery), limb ischemia following CIHH pretreatment group (CIHH+Ischemia, simulated a 5000 m altitude hypoxia, 6 h per day for 28 days, before induction of hind-limb ischemia), and sham group (Sham). The blood flow in the mouse models of hind-limb ischemia was examined using laser doppler imaging. The functional and morphological performance of ischemic muscle was evaluated using contraction force and hematoxylin–eosin and Masson’s trichrome staining. Angiogenesis was determined by immunohistochemistry staining of the endothelial markers CD31 and CD34. The protein expressions of angiogenesis-related genes were detected using Western blot assay. Chronic ischemia resulted in reduced blood perfusion, decreased contraction tension, and morphological destruction in gastrocnemius muscle. CIHH pretreatment increased the contractile force and muscle fiber diameter and decreased necrosis and fibrosis of the ischemic muscle. Also, CIHH significantly increased the density of CD31
+
and CD34
+
cells and promoted the expression of angiogenesis-related molecules in ischemic muscle. These data demonstrate that CIHH has a protective effect against chronic limb ischemia by promoting angiogenesis. |
doi_str_mv | 10.1139/cjpp-2021-0047 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A684482232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684482232</galeid><sourcerecordid>A684482232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-5f58f07350adc161f895cf3a5c67fc65ff8fe159ead28e73a826d87fadf5efb53</originalsourceid><addsrcrecordid>eNqV0str3DAQB2BTWppN2muPxbSX9OBUD8uWj2HpIxBa6OMsZHlka7ElR5Ih-99XJtvHloVSfLAtfTMMwy_LXmB0hTFt3qrdPBcEEVwgVNaPsg0miBU1K_HjbIMQ4kVJMDnLzkPYpd-KU_40O6Mlbuqa4E02bAfvrFG5sRH8ZGIEG_NhP7tW-nS8ft0bmcv1YpERQm6CGmBKd6OZ2lS3W_w-b_f57N3korF9Lm1vXA8Wgknc5gnDs-yJlmOA54f3Rfb9_btv24_F7ecPN9vr20IxgmLBNOMa1ZQh2SlcYc0bpjSVTFW1VhXTmmvArAHZEQ41lZxUHa-17DQD3TJ6kV0-9E3j3C0QopjSwDCO0oJbgiCs5CXGVUUTff0X3bnF2zRdUg1lVU2b8rfq5QjCWO2il2ptKq4rXpacEEqSKk6odQdejs6CNun4yL864dVs7sSf6OoESk-37v9k1zdHBclEuI-9XEIQN1-__If9dGwPgyjvQvCgxezNJP1eYCTWHIo1h2LNoVhzmApeHla7tBN0v_jP4CWAH4D1ykMA6dXwr6Y_ACP05p0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593567394</pqid></control><display><type>article</type><title>Chronic intermittent hypobaric hypoxia attenuates ischemic limb injury by promoting angiogenesis in mice</title><source>SPORTDiscus database</source><creator>Tian, Yanming ; Zhang, Li ; Guo, Xinqi ; Gao, Zheng ; Zhang, Yi ; Zhang, Liping ; Hou, Zhiyong</creator><creatorcontrib>Tian, Yanming ; Zhang, Li ; Guo, Xinqi ; Gao, Zheng ; Zhang, Yi ; Zhang, Liping ; Hou, Zhiyong</creatorcontrib><description>This study aimed to evaluate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against limb ischemic injury. C57BL/6 mice were randomly divided into three groups: limb ischemic injury group (Ischemia, induced by ligation and excision of the left femoral artery), limb ischemia following CIHH pretreatment group (CIHH+Ischemia, simulated a 5000 m altitude hypoxia, 6 h per day for 28 days, before induction of hind-limb ischemia), and sham group (Sham). The blood flow in the mouse models of hind-limb ischemia was examined using laser doppler imaging. The functional and morphological performance of ischemic muscle was evaluated using contraction force and hematoxylin–eosin and Masson’s trichrome staining. Angiogenesis was determined by immunohistochemistry staining of the endothelial markers CD31 and CD34. The protein expressions of angiogenesis-related genes were detected using Western blot assay. Chronic ischemia resulted in reduced blood perfusion, decreased contraction tension, and morphological destruction in gastrocnemius muscle. CIHH pretreatment increased the contractile force and muscle fiber diameter and decreased necrosis and fibrosis of the ischemic muscle. Also, CIHH significantly increased the density of CD31
+
and CD34
+
cells and promoted the expression of angiogenesis-related molecules in ischemic muscle. These data demonstrate that CIHH has a protective effect against chronic limb ischemia by promoting angiogenesis.</description><identifier>ISSN: 0008-4212</identifier><identifier>EISSN: 1205-7541</identifier><identifier>DOI: 10.1139/cjpp-2021-0047</identifier><identifier>PMID: 34197721</identifier><language>eng</language><publisher>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7: NRC Research Press</publisher><subject>Altitude ; Angiogenesis ; angiogenèse ; Animal models ; Animals ; Antigens, CD34 ; Blood flow ; Care and treatment ; CD34 antigen ; chronic intermittent hypobaric hypoxia ; Contraction ; Disease Models, Animal ; Doppler effect ; Extremities (Anatomy) ; Femoral artery ; Fibrosis ; Gastrocnemius muscle ; Health aspects ; HIF1α ; hind-limb ischemia ; Hindlimb - blood supply ; Hypoxia ; Hypoxia - physiopathology ; hypoxia inducible factor 1α ; Hypoxia-Inducible Factor 1, alpha Subunit ; hypoxie intermittente chronique hypobarique ; Immunohistochemistry ; Ischemia ; Ischemia - physiopathology ; Ischemia - therapy ; ischémie dans une patte postérieure ; Male ; Mice ; Mice, Inbred C57BL ; Morphology ; Muscle Contraction ; muscle squelettique ; Muscle, Skeletal - pathology ; Muscle, Skeletal - physiopathology ; Neovascularization ; Neovascularization, Physiologic - genetics ; Occlusion ; Perfusion ; Platelet Endothelial Cell Adhesion Molecule-1 ; skeletal muscle</subject><ispartof>Canadian journal of physiology and pharmacology, 2021-11, Vol.99 (11), p.1191-1198</ispartof><rights>COPYRIGHT 2021 NRC Research Press</rights><rights>2021 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c520t-5f58f07350adc161f895cf3a5c67fc65ff8fe159ead28e73a826d87fadf5efb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34197721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Yanming</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Guo, Xinqi</creatorcontrib><creatorcontrib>Gao, Zheng</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>Hou, Zhiyong</creatorcontrib><title>Chronic intermittent hypobaric hypoxia attenuates ischemic limb injury by promoting angiogenesis in mice</title><title>Canadian journal of physiology and pharmacology</title><addtitle>Can J Physiol Pharmacol</addtitle><description>This study aimed to evaluate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against limb ischemic injury. C57BL/6 mice were randomly divided into three groups: limb ischemic injury group (Ischemia, induced by ligation and excision of the left femoral artery), limb ischemia following CIHH pretreatment group (CIHH+Ischemia, simulated a 5000 m altitude hypoxia, 6 h per day for 28 days, before induction of hind-limb ischemia), and sham group (Sham). The blood flow in the mouse models of hind-limb ischemia was examined using laser doppler imaging. The functional and morphological performance of ischemic muscle was evaluated using contraction force and hematoxylin–eosin and Masson’s trichrome staining. Angiogenesis was determined by immunohistochemistry staining of the endothelial markers CD31 and CD34. The protein expressions of angiogenesis-related genes were detected using Western blot assay. Chronic ischemia resulted in reduced blood perfusion, decreased contraction tension, and morphological destruction in gastrocnemius muscle. CIHH pretreatment increased the contractile force and muscle fiber diameter and decreased necrosis and fibrosis of the ischemic muscle. Also, CIHH significantly increased the density of CD31
+
and CD34
+
cells and promoted the expression of angiogenesis-related molecules in ischemic muscle. These data demonstrate that CIHH has a protective effect against chronic limb ischemia by promoting angiogenesis.</description><subject>Altitude</subject><subject>Angiogenesis</subject><subject>angiogenèse</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antigens, CD34</subject><subject>Blood flow</subject><subject>Care and treatment</subject><subject>CD34 antigen</subject><subject>chronic intermittent hypobaric hypoxia</subject><subject>Contraction</subject><subject>Disease Models, Animal</subject><subject>Doppler effect</subject><subject>Extremities (Anatomy)</subject><subject>Femoral artery</subject><subject>Fibrosis</subject><subject>Gastrocnemius muscle</subject><subject>Health aspects</subject><subject>HIF1α</subject><subject>hind-limb ischemia</subject><subject>Hindlimb - blood supply</subject><subject>Hypoxia</subject><subject>Hypoxia - physiopathology</subject><subject>hypoxia inducible factor 1α</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit</subject><subject>hypoxie intermittente chronique hypobarique</subject><subject>Immunohistochemistry</subject><subject>Ischemia</subject><subject>Ischemia - physiopathology</subject><subject>Ischemia - therapy</subject><subject>ischémie dans une patte postérieure</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Morphology</subject><subject>Muscle Contraction</subject><subject>muscle squelettique</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscle, Skeletal - physiopathology</subject><subject>Neovascularization</subject><subject>Neovascularization, Physiologic - genetics</subject><subject>Occlusion</subject><subject>Perfusion</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1</subject><subject>skeletal muscle</subject><issn>0008-4212</issn><issn>1205-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqV0str3DAQB2BTWppN2muPxbSX9OBUD8uWj2HpIxBa6OMsZHlka7ElR5Ih-99XJtvHloVSfLAtfTMMwy_LXmB0hTFt3qrdPBcEEVwgVNaPsg0miBU1K_HjbIMQ4kVJMDnLzkPYpd-KU_40O6Mlbuqa4E02bAfvrFG5sRH8ZGIEG_NhP7tW-nS8ft0bmcv1YpERQm6CGmBKd6OZ2lS3W_w-b_f57N3korF9Lm1vXA8Wgknc5gnDs-yJlmOA54f3Rfb9_btv24_F7ecPN9vr20IxgmLBNOMa1ZQh2SlcYc0bpjSVTFW1VhXTmmvArAHZEQ41lZxUHa-17DQD3TJ6kV0-9E3j3C0QopjSwDCO0oJbgiCs5CXGVUUTff0X3bnF2zRdUg1lVU2b8rfq5QjCWO2il2ptKq4rXpacEEqSKk6odQdejs6CNun4yL864dVs7sSf6OoESk-37v9k1zdHBclEuI-9XEIQN1-__If9dGwPgyjvQvCgxezNJP1eYCTWHIo1h2LNoVhzmApeHla7tBN0v_jP4CWAH4D1ykMA6dXwr6Y_ACP05p0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Tian, Yanming</creator><creator>Zhang, Li</creator><creator>Guo, Xinqi</creator><creator>Gao, Zheng</creator><creator>Zhang, Yi</creator><creator>Zhang, Liping</creator><creator>Hou, Zhiyong</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20211101</creationdate><title>Chronic intermittent hypobaric hypoxia attenuates ischemic limb injury by promoting angiogenesis in mice</title><author>Tian, Yanming ; Zhang, Li ; Guo, Xinqi ; Gao, Zheng ; Zhang, Yi ; Zhang, Liping ; Hou, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-5f58f07350adc161f895cf3a5c67fc65ff8fe159ead28e73a826d87fadf5efb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Altitude</topic><topic>Angiogenesis</topic><topic>angiogenèse</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antigens, CD34</topic><topic>Blood flow</topic><topic>Care and treatment</topic><topic>CD34 antigen</topic><topic>chronic intermittent hypobaric hypoxia</topic><topic>Contraction</topic><topic>Disease Models, Animal</topic><topic>Doppler effect</topic><topic>Extremities (Anatomy)</topic><topic>Femoral artery</topic><topic>Fibrosis</topic><topic>Gastrocnemius muscle</topic><topic>Health aspects</topic><topic>HIF1α</topic><topic>hind-limb ischemia</topic><topic>Hindlimb - blood supply</topic><topic>Hypoxia</topic><topic>Hypoxia - physiopathology</topic><topic>hypoxia inducible factor 1α</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit</topic><topic>hypoxie intermittente chronique hypobarique</topic><topic>Immunohistochemistry</topic><topic>Ischemia</topic><topic>Ischemia - physiopathology</topic><topic>Ischemia - therapy</topic><topic>ischémie dans une patte postérieure</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Morphology</topic><topic>Muscle Contraction</topic><topic>muscle squelettique</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscle, Skeletal - physiopathology</topic><topic>Neovascularization</topic><topic>Neovascularization, Physiologic - genetics</topic><topic>Occlusion</topic><topic>Perfusion</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1</topic><topic>skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yanming</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Guo, Xinqi</creatorcontrib><creatorcontrib>Gao, Zheng</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>Hou, Zhiyong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Canadian journal of physiology and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yanming</au><au>Zhang, Li</au><au>Guo, Xinqi</au><au>Gao, Zheng</au><au>Zhang, Yi</au><au>Zhang, Liping</au><au>Hou, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chronic intermittent hypobaric hypoxia attenuates ischemic limb injury by promoting angiogenesis in mice</atitle><jtitle>Canadian journal of physiology and pharmacology</jtitle><addtitle>Can J Physiol Pharmacol</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>99</volume><issue>11</issue><spage>1191</spage><epage>1198</epage><pages>1191-1198</pages><issn>0008-4212</issn><eissn>1205-7541</eissn><abstract>This study aimed to evaluate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against limb ischemic injury. C57BL/6 mice were randomly divided into three groups: limb ischemic injury group (Ischemia, induced by ligation and excision of the left femoral artery), limb ischemia following CIHH pretreatment group (CIHH+Ischemia, simulated a 5000 m altitude hypoxia, 6 h per day for 28 days, before induction of hind-limb ischemia), and sham group (Sham). The blood flow in the mouse models of hind-limb ischemia was examined using laser doppler imaging. The functional and morphological performance of ischemic muscle was evaluated using contraction force and hematoxylin–eosin and Masson’s trichrome staining. Angiogenesis was determined by immunohistochemistry staining of the endothelial markers CD31 and CD34. The protein expressions of angiogenesis-related genes were detected using Western blot assay. Chronic ischemia resulted in reduced blood perfusion, decreased contraction tension, and morphological destruction in gastrocnemius muscle. CIHH pretreatment increased the contractile force and muscle fiber diameter and decreased necrosis and fibrosis of the ischemic muscle. Also, CIHH significantly increased the density of CD31
+
and CD34
+
cells and promoted the expression of angiogenesis-related molecules in ischemic muscle. These data demonstrate that CIHH has a protective effect against chronic limb ischemia by promoting angiogenesis.</abstract><cop>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7</cop><pub>NRC Research Press</pub><pmid>34197721</pmid><doi>10.1139/cjpp-2021-0047</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-4212 |
ispartof | Canadian journal of physiology and pharmacology, 2021-11, Vol.99 (11), p.1191-1198 |
issn | 0008-4212 1205-7541 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A684482232 |
source | SPORTDiscus database |
subjects | Altitude Angiogenesis angiogenèse Animal models Animals Antigens, CD34 Blood flow Care and treatment CD34 antigen chronic intermittent hypobaric hypoxia Contraction Disease Models, Animal Doppler effect Extremities (Anatomy) Femoral artery Fibrosis Gastrocnemius muscle Health aspects HIF1α hind-limb ischemia Hindlimb - blood supply Hypoxia Hypoxia - physiopathology hypoxia inducible factor 1α Hypoxia-Inducible Factor 1, alpha Subunit hypoxie intermittente chronique hypobarique Immunohistochemistry Ischemia Ischemia - physiopathology Ischemia - therapy ischémie dans une patte postérieure Male Mice Mice, Inbred C57BL Morphology Muscle Contraction muscle squelettique Muscle, Skeletal - pathology Muscle, Skeletal - physiopathology Neovascularization Neovascularization, Physiologic - genetics Occlusion Perfusion Platelet Endothelial Cell Adhesion Molecule-1 skeletal muscle |
title | Chronic intermittent hypobaric hypoxia attenuates ischemic limb injury by promoting angiogenesis in mice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chronic%20intermittent%20hypobaric%20hypoxia%20attenuates%20ischemic%20limb%20injury%20by%20promoting%20angiogenesis%20in%20mice&rft.jtitle=Canadian%20journal%20of%20physiology%20and%20pharmacology&rft.au=Tian,%20Yanming&rft.date=2021-11-01&rft.volume=99&rft.issue=11&rft.spage=1191&rft.epage=1198&rft.pages=1191-1198&rft.issn=0008-4212&rft.eissn=1205-7541&rft_id=info:doi/10.1139/cjpp-2021-0047&rft_dat=%3Cgale_proqu%3EA684482232%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-5f58f07350adc161f895cf3a5c67fc65ff8fe159ead28e73a826d87fadf5efb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593567394&rft_id=info:pmid/34197721&rft_galeid=A684482232&rfr_iscdi=true |