Loading…
Time-covariant Schrödinger equation and invariant decay probability: the [Formula omitted]-Kantowski-Sachs universe
The system under study is the [Formula omitted]-Kantowski-Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dictated b...
Saved in:
Published in: | The European physical journal. C, Particles and fields Particles and fields, 2021-12, Vol.81 (12) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | The European physical journal. C, Particles and fields |
container_volume | 81 |
creator | Pailas, Theodoros Dimakis, Nikolaos Terzis, Petros A Christodoulakis, Theodosios |
description | The system under study is the [Formula omitted]-Kantowski-Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dictated by the quadratic constraint) possessing an explicit (though arbitrary) time dependence; thus a time-covariant Schrödinger equation arises. Additionally, an invariant (under transformations [Formula omitted]) decay probability is defined and thus "observers" which correspond to different gauge choices obtain, by default, the same results. The time of decay for a Gaussian wave packet localized around the point [Formula omitted] (where a the radial scale factor) is calculated to be of the order [Formula omitted]. The acquired value is near the end of the Planck era (when comparing to a FLRW universe), during which the quantum effects are most prominent. Some of the results are compared to those obtained by following the well known canonical quantization of cosmological systems, i.e. the solutions of the Wheeler-DeWitt equation. |
doi_str_mv | 10.1140/epjc/s10052-021-09866-3 |
format | article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A684555035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684555035</galeid><sourcerecordid>A684555035</sourcerecordid><originalsourceid>FETCH-LOGICAL-g735-23b28252eb6125c28d83ffe59aa375e5747115bb9c4bf01ef2895f7ad33db2903</originalsourceid><addsrcrecordid>eNpVjNtKw0AYhIMoWKvP4N56se0ec_CuFA_FgmB7J1J2N3_SrcmmZjfVvpgv4IsZ8IAyFzMM30wUnVMyolSQMWw3ZuwpIZJhwigmWRrHmB9EAyq4wHHfH_5mIY6jE-83hBAmSDqIwtLWgE2zU61VLqCFWbcf77l1JbQIXjoVbOOQcjmy7ofJwag92raNVtpWNuwvUVgDerxu2rqrFGpqGwLkT_iup5tX_2zxQpm1R52zO2g9nEZHhao8nH37MFpeXy2nt3h-fzObTua4TLjEjGuWMslAx5RJw9I85UUBMlOKJxJkIhJKpdaZEbogFAqWZrJIVM55rllG-DAafd2WqoKVdUUTWmV65VBb0zgobN9P4lRIKQmX_eDi36BnAryFUnXer2aLh7_sJ5sMc4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time-covariant Schrödinger equation and invariant decay probability: the [Formula omitted]-Kantowski-Sachs universe</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Pailas, Theodoros ; Dimakis, Nikolaos ; Terzis, Petros A ; Christodoulakis, Theodosios</creator><creatorcontrib>Pailas, Theodoros ; Dimakis, Nikolaos ; Terzis, Petros A ; Christodoulakis, Theodosios</creatorcontrib><description>The system under study is the [Formula omitted]-Kantowski-Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dictated by the quadratic constraint) possessing an explicit (though arbitrary) time dependence; thus a time-covariant Schrödinger equation arises. Additionally, an invariant (under transformations [Formula omitted]) decay probability is defined and thus "observers" which correspond to different gauge choices obtain, by default, the same results. The time of decay for a Gaussian wave packet localized around the point [Formula omitted] (where a the radial scale factor) is calculated to be of the order [Formula omitted]. The acquired value is near the end of the Planck era (when comparing to a FLRW universe), during which the quantum effects are most prominent. Some of the results are compared to those obtained by following the well known canonical quantization of cosmological systems, i.e. the solutions of the Wheeler-DeWitt equation.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-021-09866-3</identifier><language>eng</language><publisher>Springer</publisher><ispartof>The European physical journal. C, Particles and fields, 2021-12, Vol.81 (12)</ispartof><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pailas, Theodoros</creatorcontrib><creatorcontrib>Dimakis, Nikolaos</creatorcontrib><creatorcontrib>Terzis, Petros A</creatorcontrib><creatorcontrib>Christodoulakis, Theodosios</creatorcontrib><title>Time-covariant Schrödinger equation and invariant decay probability: the [Formula omitted]-Kantowski-Sachs universe</title><title>The European physical journal. C, Particles and fields</title><description>The system under study is the [Formula omitted]-Kantowski-Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dictated by the quadratic constraint) possessing an explicit (though arbitrary) time dependence; thus a time-covariant Schrödinger equation arises. Additionally, an invariant (under transformations [Formula omitted]) decay probability is defined and thus "observers" which correspond to different gauge choices obtain, by default, the same results. The time of decay for a Gaussian wave packet localized around the point [Formula omitted] (where a the radial scale factor) is calculated to be of the order [Formula omitted]. The acquired value is near the end of the Planck era (when comparing to a FLRW universe), during which the quantum effects are most prominent. Some of the results are compared to those obtained by following the well known canonical quantization of cosmological systems, i.e. the solutions of the Wheeler-DeWitt equation.</description><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVjNtKw0AYhIMoWKvP4N56se0ec_CuFA_FgmB7J1J2N3_SrcmmZjfVvpgv4IsZ8IAyFzMM30wUnVMyolSQMWw3ZuwpIZJhwigmWRrHmB9EAyq4wHHfH_5mIY6jE-83hBAmSDqIwtLWgE2zU61VLqCFWbcf77l1JbQIXjoVbOOQcjmy7ofJwag92raNVtpWNuwvUVgDerxu2rqrFGpqGwLkT_iup5tX_2zxQpm1R52zO2g9nEZHhao8nH37MFpeXy2nt3h-fzObTua4TLjEjGuWMslAx5RJw9I85UUBMlOKJxJkIhJKpdaZEbogFAqWZrJIVM55rllG-DAafd2WqoKVdUUTWmV65VBb0zgobN9P4lRIKQmX_eDi36BnAryFUnXer2aLh7_sJ5sMc4Y</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Pailas, Theodoros</creator><creator>Dimakis, Nikolaos</creator><creator>Terzis, Petros A</creator><creator>Christodoulakis, Theodosios</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20211201</creationdate><title>Time-covariant Schrödinger equation and invariant decay probability: the [Formula omitted]-Kantowski-Sachs universe</title><author>Pailas, Theodoros ; Dimakis, Nikolaos ; Terzis, Petros A ; Christodoulakis, Theodosios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g735-23b28252eb6125c28d83ffe59aa375e5747115bb9c4bf01ef2895f7ad33db2903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pailas, Theodoros</creatorcontrib><creatorcontrib>Dimakis, Nikolaos</creatorcontrib><creatorcontrib>Terzis, Petros A</creatorcontrib><creatorcontrib>Christodoulakis, Theodosios</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pailas, Theodoros</au><au>Dimakis, Nikolaos</au><au>Terzis, Petros A</au><au>Christodoulakis, Theodosios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-covariant Schrödinger equation and invariant decay probability: the [Formula omitted]-Kantowski-Sachs universe</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>81</volume><issue>12</issue><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>The system under study is the [Formula omitted]-Kantowski-Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dictated by the quadratic constraint) possessing an explicit (though arbitrary) time dependence; thus a time-covariant Schrödinger equation arises. Additionally, an invariant (under transformations [Formula omitted]) decay probability is defined and thus "observers" which correspond to different gauge choices obtain, by default, the same results. The time of decay for a Gaussian wave packet localized around the point [Formula omitted] (where a the radial scale factor) is calculated to be of the order [Formula omitted]. The acquired value is near the end of the Planck era (when comparing to a FLRW universe), during which the quantum effects are most prominent. Some of the results are compared to those obtained by following the well known canonical quantization of cosmological systems, i.e. the solutions of the Wheeler-DeWitt equation.</abstract><pub>Springer</pub><doi>10.1140/epjc/s10052-021-09866-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6044 |
ispartof | The European physical journal. C, Particles and fields, 2021-12, Vol.81 (12) |
issn | 1434-6044 1434-6052 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A684555035 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access |
title | Time-covariant Schrödinger equation and invariant decay probability: the [Formula omitted]-Kantowski-Sachs universe |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-covariant%20Schr%C3%B6dinger%20equation%20and%20invariant%20decay%20probability:%20the%20%5BFormula%20omitted%5D-Kantowski-Sachs%20universe&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Pailas,%20Theodoros&rft.date=2021-12-01&rft.volume=81&rft.issue=12&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-021-09866-3&rft_dat=%3Cgale%3EA684555035%3C/gale%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g735-23b28252eb6125c28d83ffe59aa375e5747115bb9c4bf01ef2895f7ad33db2903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A684555035&rfr_iscdi=true |