Loading…

Time-covariant Schrödinger equation and invariant decay probability: the [Formula omitted]-Kantowski-Sachs universe

The system under study is the [Formula omitted]-Kantowski-Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dictated b...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Particles and fields, 2021-12, Vol.81 (12)
Main Authors: Pailas, Theodoros, Dimakis, Nikolaos, Terzis, Petros A, Christodoulakis, Theodosios
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page
container_title The European physical journal. C, Particles and fields
container_volume 81
creator Pailas, Theodoros
Dimakis, Nikolaos
Terzis, Petros A
Christodoulakis, Theodosios
description The system under study is the [Formula omitted]-Kantowski-Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dictated by the quadratic constraint) possessing an explicit (though arbitrary) time dependence; thus a time-covariant Schrödinger equation arises. Additionally, an invariant (under transformations [Formula omitted]) decay probability is defined and thus "observers" which correspond to different gauge choices obtain, by default, the same results. The time of decay for a Gaussian wave packet localized around the point [Formula omitted] (where a the radial scale factor) is calculated to be of the order [Formula omitted]. The acquired value is near the end of the Planck era (when comparing to a FLRW universe), during which the quantum effects are most prominent. Some of the results are compared to those obtained by following the well known canonical quantization of cosmological systems, i.e. the solutions of the Wheeler-DeWitt equation.
doi_str_mv 10.1140/epjc/s10052-021-09866-3
format article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A684555035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684555035</galeid><sourcerecordid>A684555035</sourcerecordid><originalsourceid>FETCH-LOGICAL-g735-23b28252eb6125c28d83ffe59aa375e5747115bb9c4bf01ef2895f7ad33db2903</originalsourceid><addsrcrecordid>eNpVjNtKw0AYhIMoWKvP4N56se0ec_CuFA_FgmB7J1J2N3_SrcmmZjfVvpgv4IsZ8IAyFzMM30wUnVMyolSQMWw3ZuwpIZJhwigmWRrHmB9EAyq4wHHfH_5mIY6jE-83hBAmSDqIwtLWgE2zU61VLqCFWbcf77l1JbQIXjoVbOOQcjmy7ofJwag92raNVtpWNuwvUVgDerxu2rqrFGpqGwLkT_iup5tX_2zxQpm1R52zO2g9nEZHhao8nH37MFpeXy2nt3h-fzObTua4TLjEjGuWMslAx5RJw9I85UUBMlOKJxJkIhJKpdaZEbogFAqWZrJIVM55rllG-DAafd2WqoKVdUUTWmV65VBb0zgobN9P4lRIKQmX_eDi36BnAryFUnXer2aLh7_sJ5sMc4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time-covariant Schrödinger equation and invariant decay probability: the [Formula omitted]-Kantowski-Sachs universe</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Pailas, Theodoros ; Dimakis, Nikolaos ; Terzis, Petros A ; Christodoulakis, Theodosios</creator><creatorcontrib>Pailas, Theodoros ; Dimakis, Nikolaos ; Terzis, Petros A ; Christodoulakis, Theodosios</creatorcontrib><description>The system under study is the [Formula omitted]-Kantowski-Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dictated by the quadratic constraint) possessing an explicit (though arbitrary) time dependence; thus a time-covariant Schrödinger equation arises. Additionally, an invariant (under transformations [Formula omitted]) decay probability is defined and thus "observers" which correspond to different gauge choices obtain, by default, the same results. The time of decay for a Gaussian wave packet localized around the point [Formula omitted] (where a the radial scale factor) is calculated to be of the order [Formula omitted]. The acquired value is near the end of the Planck era (when comparing to a FLRW universe), during which the quantum effects are most prominent. Some of the results are compared to those obtained by following the well known canonical quantization of cosmological systems, i.e. the solutions of the Wheeler-DeWitt equation.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-021-09866-3</identifier><language>eng</language><publisher>Springer</publisher><ispartof>The European physical journal. C, Particles and fields, 2021-12, Vol.81 (12)</ispartof><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pailas, Theodoros</creatorcontrib><creatorcontrib>Dimakis, Nikolaos</creatorcontrib><creatorcontrib>Terzis, Petros A</creatorcontrib><creatorcontrib>Christodoulakis, Theodosios</creatorcontrib><title>Time-covariant Schrödinger equation and invariant decay probability: the [Formula omitted]-Kantowski-Sachs universe</title><title>The European physical journal. C, Particles and fields</title><description>The system under study is the [Formula omitted]-Kantowski-Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dictated by the quadratic constraint) possessing an explicit (though arbitrary) time dependence; thus a time-covariant Schrödinger equation arises. Additionally, an invariant (under transformations [Formula omitted]) decay probability is defined and thus "observers" which correspond to different gauge choices obtain, by default, the same results. The time of decay for a Gaussian wave packet localized around the point [Formula omitted] (where a the radial scale factor) is calculated to be of the order [Formula omitted]. The acquired value is near the end of the Planck era (when comparing to a FLRW universe), during which the quantum effects are most prominent. Some of the results are compared to those obtained by following the well known canonical quantization of cosmological systems, i.e. the solutions of the Wheeler-DeWitt equation.</description><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVjNtKw0AYhIMoWKvP4N56se0ec_CuFA_FgmB7J1J2N3_SrcmmZjfVvpgv4IsZ8IAyFzMM30wUnVMyolSQMWw3ZuwpIZJhwigmWRrHmB9EAyq4wHHfH_5mIY6jE-83hBAmSDqIwtLWgE2zU61VLqCFWbcf77l1JbQIXjoVbOOQcjmy7ofJwag92raNVtpWNuwvUVgDerxu2rqrFGpqGwLkT_iup5tX_2zxQpm1R52zO2g9nEZHhao8nH37MFpeXy2nt3h-fzObTua4TLjEjGuWMslAx5RJw9I85UUBMlOKJxJkIhJKpdaZEbogFAqWZrJIVM55rllG-DAafd2WqoKVdUUTWmV65VBb0zgobN9P4lRIKQmX_eDi36BnAryFUnXer2aLh7_sJ5sMc4Y</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Pailas, Theodoros</creator><creator>Dimakis, Nikolaos</creator><creator>Terzis, Petros A</creator><creator>Christodoulakis, Theodosios</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20211201</creationdate><title>Time-covariant Schrödinger equation and invariant decay probability: the [Formula omitted]-Kantowski-Sachs universe</title><author>Pailas, Theodoros ; Dimakis, Nikolaos ; Terzis, Petros A ; Christodoulakis, Theodosios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g735-23b28252eb6125c28d83ffe59aa375e5747115bb9c4bf01ef2895f7ad33db2903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pailas, Theodoros</creatorcontrib><creatorcontrib>Dimakis, Nikolaos</creatorcontrib><creatorcontrib>Terzis, Petros A</creatorcontrib><creatorcontrib>Christodoulakis, Theodosios</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pailas, Theodoros</au><au>Dimakis, Nikolaos</au><au>Terzis, Petros A</au><au>Christodoulakis, Theodosios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-covariant Schrödinger equation and invariant decay probability: the [Formula omitted]-Kantowski-Sachs universe</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>81</volume><issue>12</issue><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>The system under study is the [Formula omitted]-Kantowski-Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dictated by the quadratic constraint) possessing an explicit (though arbitrary) time dependence; thus a time-covariant Schrödinger equation arises. Additionally, an invariant (under transformations [Formula omitted]) decay probability is defined and thus "observers" which correspond to different gauge choices obtain, by default, the same results. The time of decay for a Gaussian wave packet localized around the point [Formula omitted] (where a the radial scale factor) is calculated to be of the order [Formula omitted]. The acquired value is near the end of the Planck era (when comparing to a FLRW universe), during which the quantum effects are most prominent. Some of the results are compared to those obtained by following the well known canonical quantization of cosmological systems, i.e. the solutions of the Wheeler-DeWitt equation.</abstract><pub>Springer</pub><doi>10.1140/epjc/s10052-021-09866-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2021-12, Vol.81 (12)
issn 1434-6044
1434-6052
language eng
recordid cdi_gale_infotracacademiconefile_A684555035
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access
title Time-covariant Schrödinger equation and invariant decay probability: the [Formula omitted]-Kantowski-Sachs universe
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-covariant%20Schr%C3%B6dinger%20equation%20and%20invariant%20decay%20probability:%20the%20%5BFormula%20omitted%5D-Kantowski-Sachs%20universe&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Pailas,%20Theodoros&rft.date=2021-12-01&rft.volume=81&rft.issue=12&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-021-09866-3&rft_dat=%3Cgale%3EA684555035%3C/gale%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g735-23b28252eb6125c28d83ffe59aa375e5747115bb9c4bf01ef2895f7ad33db2903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A684555035&rfr_iscdi=true