Loading…

RETRACTED ARTICLE: Prediction of economic growth by extreme learning approach based on science and technology transfer

The purpose of this research is to develop and apply the extreme learning machine (ELM) to forecast gross domestic product (GDP) growth rate. Economic growth may be developed on the basis on combination of different factors. In this investigation was analyzed the economic growth prediction based on...

Full description

Saved in:
Bibliographic Details
Published in:Quality & quantity 2017-05, Vol.51 (3), p.1395-1401
Main Authors: Karanikić, Petra, Mladenović, Igor, Sokolov-Mladenović, Svetlana, Alizamir, Meysam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this research is to develop and apply the extreme learning machine (ELM) to forecast gross domestic product (GDP) growth rate. Economic growth may be developed on the basis on combination of different factors. In this investigation was analyzed the economic growth prediction based on the science and technology transfer. The main goal was to analyze the influence of number of granted European patents on the economic growth by field of technology. GDP was used as economic growth indicator. The ELM results are compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models were accessed based on simulation results and using several statistical indicators. Coefficient of determination for ELM method is 0.9841, for ANN method it is 0.7956 and for the GP method it is 0.7561. Based upon simulation results, it is demonstrated that ELM can be utilized effectively in applications of GDP forecasting.
ISSN:0033-5177
1573-7845
DOI:10.1007/s11135-016-0337-y