Loading…
Convergence of Nonequilibrium Langevin Dynamics for Planar Flows
We prove that incompressible two-dimensional nonequilibrium Langevin dynamics (NELD) converges exponentially fast to a steady-state limit cycle. We use automorphism remapping periodic boundary conditions (PBCs) such as Lees–Edwards PBCs and Kraynik–Reinelt PBCs to treat respectively shear flow and p...
Saved in:
Published in: | Journal of statistical physics 2023-04, Vol.190 (5), Article 91 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-2ba16052a98dfbc737906aeaa7aefb4cebb95aa2ac8caa4778fdc9a4e75257ce3 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Journal of statistical physics |
container_volume | 190 |
creator | Dobson, Matthew Geraldo, Abdel Kader A. |
description | We prove that incompressible two-dimensional nonequilibrium Langevin dynamics (NELD) converges exponentially fast to a steady-state limit cycle. We use automorphism remapping periodic boundary conditions (PBCs) such as Lees–Edwards PBCs and Kraynik–Reinelt PBCs to treat respectively shear flow and planar elongational flow. The convergence is shown using a technique similar to (Joubaud et al. in J Stat Phys 158:1–36, 2015). |
doi_str_mv | 10.1007/s10955-023-03109-3 |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A747180370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747180370</galeid><sourcerecordid>A747180370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-2ba16052a98dfbc737906aeaa7aefb4cebb95aa2ac8caa4778fdc9a4e75257ce3</originalsourceid><addsrcrecordid>eNp9kM1OQyEQhYnRxFp9AVe8AJWfS7nsbKpVk0Zd6JrMpdDQ3IJCW-Pbi14XrswsZjKZb3LOQeiS0QmjVF0VRrWUhHJBqKgzEUdoxKTiRE-ZOP4zn6KzUjaUUt1qOULX8xQPLq9dtA4njx9TdO_70Icuh_0WLyGu3SFEfPMZYRtswT5l_NxDhIwXffoo5-jEQ1_cxW8fo9fF7cv8niyf7h7msyWxvGU7wjtgUyo56HblO6uE0nQKDkCB811jXddpCcDBthagUar1K6uhcUpyqawTYzQZ_q6hdyZEn3YZbK2Vq7qqah_qfqYaxVoqFK0AHwCbUynZefOWwxbyp2HUfIdmhtBMDc38hGZEhcQAlXpcrWezSfscq7H_qC8zk3C-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence of Nonequilibrium Langevin Dynamics for Planar Flows</title><source>Springer Link</source><creator>Dobson, Matthew ; Geraldo, Abdel Kader A.</creator><creatorcontrib>Dobson, Matthew ; Geraldo, Abdel Kader A.</creatorcontrib><description>We prove that incompressible two-dimensional nonequilibrium Langevin dynamics (NELD) converges exponentially fast to a steady-state limit cycle. We use automorphism remapping periodic boundary conditions (PBCs) such as Lees–Edwards PBCs and Kraynik–Reinelt PBCs to treat respectively shear flow and planar elongational flow. The convergence is shown using a technique similar to (Joubaud et al. in J Stat Phys 158:1–36, 2015).</description><identifier>ISSN: 1572-9613</identifier><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-023-03109-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Distribution (Probability theory) ; Mathematical and Computational Physics ; Molecular dynamics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2023-04, Vol.190 (5), Article 91</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-2ba16052a98dfbc737906aeaa7aefb4cebb95aa2ac8caa4778fdc9a4e75257ce3</cites><orcidid>0000-0002-4245-7637 ; 0000-0001-8066-1308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dobson, Matthew</creatorcontrib><creatorcontrib>Geraldo, Abdel Kader A.</creatorcontrib><title>Convergence of Nonequilibrium Langevin Dynamics for Planar Flows</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We prove that incompressible two-dimensional nonequilibrium Langevin dynamics (NELD) converges exponentially fast to a steady-state limit cycle. We use automorphism remapping periodic boundary conditions (PBCs) such as Lees–Edwards PBCs and Kraynik–Reinelt PBCs to treat respectively shear flow and planar elongational flow. The convergence is shown using a technique similar to (Joubaud et al. in J Stat Phys 158:1–36, 2015).</description><subject>Distribution (Probability theory)</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular dynamics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>1572-9613</issn><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OQyEQhYnRxFp9AVe8AJWfS7nsbKpVk0Zd6JrMpdDQ3IJCW-Pbi14XrswsZjKZb3LOQeiS0QmjVF0VRrWUhHJBqKgzEUdoxKTiRE-ZOP4zn6KzUjaUUt1qOULX8xQPLq9dtA4njx9TdO_70Icuh_0WLyGu3SFEfPMZYRtswT5l_NxDhIwXffoo5-jEQ1_cxW8fo9fF7cv8niyf7h7msyWxvGU7wjtgUyo56HblO6uE0nQKDkCB811jXddpCcDBthagUar1K6uhcUpyqawTYzQZ_q6hdyZEn3YZbK2Vq7qqah_qfqYaxVoqFK0AHwCbUynZefOWwxbyp2HUfIdmhtBMDc38hGZEhcQAlXpcrWezSfscq7H_qC8zk3C-</recordid><startdate>20230426</startdate><enddate>20230426</enddate><creator>Dobson, Matthew</creator><creator>Geraldo, Abdel Kader A.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4245-7637</orcidid><orcidid>https://orcid.org/0000-0001-8066-1308</orcidid></search><sort><creationdate>20230426</creationdate><title>Convergence of Nonequilibrium Langevin Dynamics for Planar Flows</title><author>Dobson, Matthew ; Geraldo, Abdel Kader A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-2ba16052a98dfbc737906aeaa7aefb4cebb95aa2ac8caa4778fdc9a4e75257ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Distribution (Probability theory)</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular dynamics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobson, Matthew</creatorcontrib><creatorcontrib>Geraldo, Abdel Kader A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobson, Matthew</au><au>Geraldo, Abdel Kader A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of Nonequilibrium Langevin Dynamics for Planar Flows</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2023-04-26</date><risdate>2023</risdate><volume>190</volume><issue>5</issue><artnum>91</artnum><issn>1572-9613</issn><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We prove that incompressible two-dimensional nonequilibrium Langevin dynamics (NELD) converges exponentially fast to a steady-state limit cycle. We use automorphism remapping periodic boundary conditions (PBCs) such as Lees–Edwards PBCs and Kraynik–Reinelt PBCs to treat respectively shear flow and planar elongational flow. The convergence is shown using a technique similar to (Joubaud et al. in J Stat Phys 158:1–36, 2015).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-023-03109-3</doi><orcidid>https://orcid.org/0000-0002-4245-7637</orcidid><orcidid>https://orcid.org/0000-0001-8066-1308</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1572-9613 |
ispartof | Journal of statistical physics, 2023-04, Vol.190 (5), Article 91 |
issn | 1572-9613 0022-4715 1572-9613 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A747180370 |
source | Springer Link |
subjects | Distribution (Probability theory) Mathematical and Computational Physics Molecular dynamics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
title | Convergence of Nonequilibrium Langevin Dynamics for Planar Flows |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20Nonequilibrium%20Langevin%20Dynamics%20for%20Planar%20Flows&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Dobson,%20Matthew&rft.date=2023-04-26&rft.volume=190&rft.issue=5&rft.artnum=91&rft.issn=1572-9613&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-023-03109-3&rft_dat=%3Cgale_cross%3EA747180370%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-2ba16052a98dfbc737906aeaa7aefb4cebb95aa2ac8caa4778fdc9a4e75257ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A747180370&rfr_iscdi=true |