Loading…

Convergence of Nonequilibrium Langevin Dynamics for Planar Flows

We prove that incompressible two-dimensional nonequilibrium Langevin dynamics (NELD) converges exponentially fast to a steady-state limit cycle. We use automorphism remapping periodic boundary conditions (PBCs) such as Lees–Edwards PBCs and Kraynik–Reinelt PBCs to treat respectively shear flow and p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical physics 2023-04, Vol.190 (5), Article 91
Main Authors: Dobson, Matthew, Geraldo, Abdel Kader A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c281t-2ba16052a98dfbc737906aeaa7aefb4cebb95aa2ac8caa4778fdc9a4e75257ce3
container_end_page
container_issue 5
container_start_page
container_title Journal of statistical physics
container_volume 190
creator Dobson, Matthew
Geraldo, Abdel Kader A.
description We prove that incompressible two-dimensional nonequilibrium Langevin dynamics (NELD) converges exponentially fast to a steady-state limit cycle. We use automorphism remapping periodic boundary conditions (PBCs) such as Lees–Edwards PBCs and Kraynik–Reinelt PBCs to treat respectively shear flow and planar elongational flow. The convergence is shown using a technique similar to (Joubaud et al. in J Stat Phys 158:1–36, 2015).
doi_str_mv 10.1007/s10955-023-03109-3
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A747180370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747180370</galeid><sourcerecordid>A747180370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-2ba16052a98dfbc737906aeaa7aefb4cebb95aa2ac8caa4778fdc9a4e75257ce3</originalsourceid><addsrcrecordid>eNp9kM1OQyEQhYnRxFp9AVe8AJWfS7nsbKpVk0Zd6JrMpdDQ3IJCW-Pbi14XrswsZjKZb3LOQeiS0QmjVF0VRrWUhHJBqKgzEUdoxKTiRE-ZOP4zn6KzUjaUUt1qOULX8xQPLq9dtA4njx9TdO_70Icuh_0WLyGu3SFEfPMZYRtswT5l_NxDhIwXffoo5-jEQ1_cxW8fo9fF7cv8niyf7h7msyWxvGU7wjtgUyo56HblO6uE0nQKDkCB811jXddpCcDBthagUar1K6uhcUpyqawTYzQZ_q6hdyZEn3YZbK2Vq7qqah_qfqYaxVoqFK0AHwCbUynZefOWwxbyp2HUfIdmhtBMDc38hGZEhcQAlXpcrWezSfscq7H_qC8zk3C-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence of Nonequilibrium Langevin Dynamics for Planar Flows</title><source>Springer Link</source><creator>Dobson, Matthew ; Geraldo, Abdel Kader A.</creator><creatorcontrib>Dobson, Matthew ; Geraldo, Abdel Kader A.</creatorcontrib><description>We prove that incompressible two-dimensional nonequilibrium Langevin dynamics (NELD) converges exponentially fast to a steady-state limit cycle. We use automorphism remapping periodic boundary conditions (PBCs) such as Lees–Edwards PBCs and Kraynik–Reinelt PBCs to treat respectively shear flow and planar elongational flow. The convergence is shown using a technique similar to (Joubaud et al. in J Stat Phys 158:1–36, 2015).</description><identifier>ISSN: 1572-9613</identifier><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-023-03109-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Distribution (Probability theory) ; Mathematical and Computational Physics ; Molecular dynamics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2023-04, Vol.190 (5), Article 91</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-2ba16052a98dfbc737906aeaa7aefb4cebb95aa2ac8caa4778fdc9a4e75257ce3</cites><orcidid>0000-0002-4245-7637 ; 0000-0001-8066-1308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dobson, Matthew</creatorcontrib><creatorcontrib>Geraldo, Abdel Kader A.</creatorcontrib><title>Convergence of Nonequilibrium Langevin Dynamics for Planar Flows</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We prove that incompressible two-dimensional nonequilibrium Langevin dynamics (NELD) converges exponentially fast to a steady-state limit cycle. We use automorphism remapping periodic boundary conditions (PBCs) such as Lees–Edwards PBCs and Kraynik–Reinelt PBCs to treat respectively shear flow and planar elongational flow. The convergence is shown using a technique similar to (Joubaud et al. in J Stat Phys 158:1–36, 2015).</description><subject>Distribution (Probability theory)</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular dynamics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>1572-9613</issn><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OQyEQhYnRxFp9AVe8AJWfS7nsbKpVk0Zd6JrMpdDQ3IJCW-Pbi14XrswsZjKZb3LOQeiS0QmjVF0VRrWUhHJBqKgzEUdoxKTiRE-ZOP4zn6KzUjaUUt1qOULX8xQPLq9dtA4njx9TdO_70Icuh_0WLyGu3SFEfPMZYRtswT5l_NxDhIwXffoo5-jEQ1_cxW8fo9fF7cv8niyf7h7msyWxvGU7wjtgUyo56HblO6uE0nQKDkCB811jXddpCcDBthagUar1K6uhcUpyqawTYzQZ_q6hdyZEn3YZbK2Vq7qqah_qfqYaxVoqFK0AHwCbUynZefOWwxbyp2HUfIdmhtBMDc38hGZEhcQAlXpcrWezSfscq7H_qC8zk3C-</recordid><startdate>20230426</startdate><enddate>20230426</enddate><creator>Dobson, Matthew</creator><creator>Geraldo, Abdel Kader A.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4245-7637</orcidid><orcidid>https://orcid.org/0000-0001-8066-1308</orcidid></search><sort><creationdate>20230426</creationdate><title>Convergence of Nonequilibrium Langevin Dynamics for Planar Flows</title><author>Dobson, Matthew ; Geraldo, Abdel Kader A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-2ba16052a98dfbc737906aeaa7aefb4cebb95aa2ac8caa4778fdc9a4e75257ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Distribution (Probability theory)</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular dynamics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobson, Matthew</creatorcontrib><creatorcontrib>Geraldo, Abdel Kader A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobson, Matthew</au><au>Geraldo, Abdel Kader A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of Nonequilibrium Langevin Dynamics for Planar Flows</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2023-04-26</date><risdate>2023</risdate><volume>190</volume><issue>5</issue><artnum>91</artnum><issn>1572-9613</issn><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We prove that incompressible two-dimensional nonequilibrium Langevin dynamics (NELD) converges exponentially fast to a steady-state limit cycle. We use automorphism remapping periodic boundary conditions (PBCs) such as Lees–Edwards PBCs and Kraynik–Reinelt PBCs to treat respectively shear flow and planar elongational flow. The convergence is shown using a technique similar to (Joubaud et al. in J Stat Phys 158:1–36, 2015).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-023-03109-3</doi><orcidid>https://orcid.org/0000-0002-4245-7637</orcidid><orcidid>https://orcid.org/0000-0001-8066-1308</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1572-9613
ispartof Journal of statistical physics, 2023-04, Vol.190 (5), Article 91
issn 1572-9613
0022-4715
1572-9613
language eng
recordid cdi_gale_infotracacademiconefile_A747180370
source Springer Link
subjects Distribution (Probability theory)
Mathematical and Computational Physics
Molecular dynamics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title Convergence of Nonequilibrium Langevin Dynamics for Planar Flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20Nonequilibrium%20Langevin%20Dynamics%20for%20Planar%20Flows&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Dobson,%20Matthew&rft.date=2023-04-26&rft.volume=190&rft.issue=5&rft.artnum=91&rft.issn=1572-9613&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-023-03109-3&rft_dat=%3Cgale_cross%3EA747180370%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-2ba16052a98dfbc737906aeaa7aefb4cebb95aa2ac8caa4778fdc9a4e75257ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A747180370&rfr_iscdi=true