Loading…

Probing a [Formula omitted] with non-universal fermion couplings through top quark fusion, decays to bottom quarks, and machine learning techniques

The production of heavy neutral mass resonances, [Formula omitted], has been widely studied theoretically and experimentally. Although the nature, mass, couplings, and associated quantum numbers of this hypothetical particle are yet to be determined, current LHC experimental results have set strong...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Particles and fields, 2023-05, Vol.83 (5)
Main Authors: Barbosa, Diego, Díaz, Felipe, Quintero, Liliana, Flórez, Andrés, Sanchez, Manuel, Gurrola, Alfredo, Sheridan, Elijah
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The production of heavy neutral mass resonances, [Formula omitted], has been widely studied theoretically and experimentally. Although the nature, mass, couplings, and associated quantum numbers of this hypothetical particle are yet to be determined, current LHC experimental results have set strong constraints assuming the simplest beyond Standard Model (SM) hypotheses. We present a new feasibility study on the production of a [Formula omitted] boson at the LHC, with family non-universal couplings, considering proton-proton collisions at [Formula omitted] and 14 TeV. Such a hypothesis is well motivated theoretically and it can explain observed differences between SM predictions and experimental results, as well as being a useful tool to further probe recent results in searches for new physics considering non-universal fermion couplings. We work under two simplified phenomenological frameworks where the [Formula omitted] masses and couplings to the SM particles are free parameters, and consider final states of the [Formula omitted] decaying to a pair of [Formula omitted] quarks. The analysis is performed using machine learning techniques to maximize the sensitivity. Despite being a well motivated physics case in its own merit, such scenarios have not been fully considered in ongoing searches at the LHC. We note the proposed search methodology can be a key mode for discovery over a large mass range, including low masses, traditionally considered difficult due to experimental constrains. In addition, the proposed search is complementary to existing strategies.
ISSN:1434-6044
DOI:10.1140/epjc/s10052-023-11506-x