Loading…

Investigation on Physico Chemical and X-ray Shielding Performance of Zinc Doped Nano-WO[sub.3] Epoxy Composite for Light Weight Lead Free Aprons

This report addresses a way to reduce the usage of highly toxic lead in diagnostic X-ray shielding by developing a cost-effective, eco-friendly nano-tungsten trioxide (WO[sub.3]) epoxy composite for low-weight aprons. Zinc (Zn)-doped WO[sub.3] nanoparticles of 20 to 400 nm were synthesized by an ine...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2023-05, Vol.16 (10)
Main Authors: Palanisami, Sanjeevi, Dhandapani, Vishnu Shankar, Jayachandran, Varuna, Muniappan, Elango, Park, Dongkyou, Kim, Byungki, Govindasami, Kalpana
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This report addresses a way to reduce the usage of highly toxic lead in diagnostic X-ray shielding by developing a cost-effective, eco-friendly nano-tungsten trioxide (WO[sub.3]) epoxy composite for low-weight aprons. Zinc (Zn)-doped WO[sub.3] nanoparticles of 20 to 400 nm were synthesized by an inexpensive and scalable chemical acid-precipitation method. The prepared nanoparticles were subjected to X-ray diffraction, Raman spectroscopy, UV-visible spectroscopy, photoluminescence, high-resolution-transmission electron microscope, scanning electron microscope, and the results showed that doping plays a critical role in influencing the physico-chemical properties. The prepared nanoparticles were used as shielding material in this study, which were dispersed in a non-water soluble durable epoxy resin polymer matrix and the dispersed materials were coated over a rexine cloth using the drop-casting method. The X-ray shielding performance was evaluated by estimating the linear attenuation coefficient (μ), mass attenuation coefficient (μ[sub.m]), half value layer (HVL), and X-ray percentage of attenuation. Overall, an improvement in X-ray attenuation in the range of 40-100 kVp was observed for the undoped WO[sub.3] nanoparticles and Zn-doped WO[sub.3] nanoparticles, which was nearly equal to lead oxide-based aprons (reference material). At 40 kVp, the percentage of attenuation of 2% Zn doped WO[sub.3] was 97% which was better than that of other prepared aprons. This study proves that 2% Zn doped WO[sub.3] epoxy composite yields a better particle size distribution, μ[sub.m], and lower HVL value and hence it can be a convenient lead free X-ray shielding apron.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16103866