Loading…
Some Poisson-Based Processes at Geometric Times
We consider the composition of three different stochastic processes with an independent geometric random time. First, the parent process is assumed to be a homogeneous Poisson process. We aim at providing the probability law of the derived process in terms of the geometric polynomials, the governing...
Saved in:
Published in: | Journal of statistical physics 2023-05, Vol.190 (6), Article 107 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183 |
---|---|
cites | cdi_FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183 |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | Journal of statistical physics |
container_volume | 190 |
creator | Meoli, Alessandra |
description | We consider the composition of three different stochastic processes with an independent geometric random time. First, the parent process is assumed to be a homogeneous Poisson process. We aim at providing the probability law of the derived process in terms of the geometric polynomials, the governing equations, its representation as a random sum and establishing its main properties. We study stochastic comparisons and the first-crossing-time problem as well. Next, we take as outer processes both an additive and a multiplicative compound Poisson process. We derive the explicit expression of the distribution of the resulting processes and of their moments and then focus on some special cases. Potential applications are also discussed. |
doi_str_mv | 10.1007/s10955-023-03117-3 |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A751158387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751158387</galeid><sourcerecordid>A751158387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwApz6AtnshDTpcUwwkCYxiXGO0tSdOq0NSsqBtydQDpyQD7as__Mv_4zdIiwQQC8TQqUUByE5SETN5RmbodKCVyXK8z_zJbtK6QgAlanUjC1fQ0_FLnQphYHfu0RNsYvBU0qUCjcWG8qCMXa-2Hc9pWt20bpTopvfPmdvjw_79RPfvmye16st91LCyEWpFWp02FR19pGiKluNsjbemzuqwXjlUVXQqlaT8A00phYAjozwzqCRc7aY7h7ciWw3tGGMzudqqO98GKjt8n6VXVAZaXQGxAT4GFKK1Nr32PUufloE-52RnTKyOSP7k5GVGZITlLJ4OFC0x_ARh_zYf9QXdBln6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Poisson-Based Processes at Geometric Times</title><source>Springer Link</source><creator>Meoli, Alessandra</creator><creatorcontrib>Meoli, Alessandra</creatorcontrib><description>We consider the composition of three different stochastic processes with an independent geometric random time. First, the parent process is assumed to be a homogeneous Poisson process. We aim at providing the probability law of the derived process in terms of the geometric polynomials, the governing equations, its representation as a random sum and establishing its main properties. We study stochastic comparisons and the first-crossing-time problem as well. Next, we take as outer processes both an additive and a multiplicative compound Poisson process. We derive the explicit expression of the distribution of the resulting processes and of their moments and then focus on some special cases. Potential applications are also discussed.</description><identifier>ISSN: 1572-9613</identifier><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-023-03117-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Laws, regulations and rules ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Stochastic processes ; Theoretical</subject><ispartof>Journal of statistical physics, 2023-05, Vol.190 (6), Article 107</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183</citedby><cites>FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183</cites><orcidid>0000-0002-3516-9530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Meoli, Alessandra</creatorcontrib><title>Some Poisson-Based Processes at Geometric Times</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We consider the composition of three different stochastic processes with an independent geometric random time. First, the parent process is assumed to be a homogeneous Poisson process. We aim at providing the probability law of the derived process in terms of the geometric polynomials, the governing equations, its representation as a random sum and establishing its main properties. We study stochastic comparisons and the first-crossing-time problem as well. Next, we take as outer processes both an additive and a multiplicative compound Poisson process. We derive the explicit expression of the distribution of the resulting processes and of their moments and then focus on some special cases. Potential applications are also discussed.</description><subject>Analysis</subject><subject>Laws, regulations and rules</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Stochastic processes</subject><subject>Theoretical</subject><issn>1572-9613</issn><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwApz6AtnshDTpcUwwkCYxiXGO0tSdOq0NSsqBtydQDpyQD7as__Mv_4zdIiwQQC8TQqUUByE5SETN5RmbodKCVyXK8z_zJbtK6QgAlanUjC1fQ0_FLnQphYHfu0RNsYvBU0qUCjcWG8qCMXa-2Hc9pWt20bpTopvfPmdvjw_79RPfvmye16st91LCyEWpFWp02FR19pGiKluNsjbemzuqwXjlUVXQqlaT8A00phYAjozwzqCRc7aY7h7ciWw3tGGMzudqqO98GKjt8n6VXVAZaXQGxAT4GFKK1Nr32PUufloE-52RnTKyOSP7k5GVGZITlLJ4OFC0x_ARh_zYf9QXdBln6w</recordid><startdate>20230529</startdate><enddate>20230529</enddate><creator>Meoli, Alessandra</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3516-9530</orcidid></search><sort><creationdate>20230529</creationdate><title>Some Poisson-Based Processes at Geometric Times</title><author>Meoli, Alessandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Laws, regulations and rules</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Stochastic processes</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meoli, Alessandra</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meoli, Alessandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Poisson-Based Processes at Geometric Times</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2023-05-29</date><risdate>2023</risdate><volume>190</volume><issue>6</issue><artnum>107</artnum><issn>1572-9613</issn><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We consider the composition of three different stochastic processes with an independent geometric random time. First, the parent process is assumed to be a homogeneous Poisson process. We aim at providing the probability law of the derived process in terms of the geometric polynomials, the governing equations, its representation as a random sum and establishing its main properties. We study stochastic comparisons and the first-crossing-time problem as well. Next, we take as outer processes both an additive and a multiplicative compound Poisson process. We derive the explicit expression of the distribution of the resulting processes and of their moments and then focus on some special cases. Potential applications are also discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-023-03117-3</doi><orcidid>https://orcid.org/0000-0002-3516-9530</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1572-9613 |
ispartof | Journal of statistical physics, 2023-05, Vol.190 (6), Article 107 |
issn | 1572-9613 0022-4715 1572-9613 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A751158387 |
source | Springer Link |
subjects | Analysis Laws, regulations and rules Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Stochastic processes Theoretical |
title | Some Poisson-Based Processes at Geometric Times |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Poisson-Based%20Processes%20at%20Geometric%20Times&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Meoli,%20Alessandra&rft.date=2023-05-29&rft.volume=190&rft.issue=6&rft.artnum=107&rft.issn=1572-9613&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-023-03117-3&rft_dat=%3Cgale_cross%3EA751158387%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A751158387&rfr_iscdi=true |