Loading…

Some Poisson-Based Processes at Geometric Times

We consider the composition of three different stochastic processes with an independent geometric random time. First, the parent process is assumed to be a homogeneous Poisson process. We aim at providing the probability law of the derived process in terms of the geometric polynomials, the governing...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical physics 2023-05, Vol.190 (6), Article 107
Main Author: Meoli, Alessandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183
cites cdi_FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183
container_end_page
container_issue 6
container_start_page
container_title Journal of statistical physics
container_volume 190
creator Meoli, Alessandra
description We consider the composition of three different stochastic processes with an independent geometric random time. First, the parent process is assumed to be a homogeneous Poisson process. We aim at providing the probability law of the derived process in terms of the geometric polynomials, the governing equations, its representation as a random sum and establishing its main properties. We study stochastic comparisons and the first-crossing-time problem as well. Next, we take as outer processes both an additive and a multiplicative compound Poisson process. We derive the explicit expression of the distribution of the resulting processes and of their moments and then focus on some special cases. Potential applications are also discussed.
doi_str_mv 10.1007/s10955-023-03117-3
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A751158387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751158387</galeid><sourcerecordid>A751158387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwApz6AtnshDTpcUwwkCYxiXGO0tSdOq0NSsqBtydQDpyQD7as__Mv_4zdIiwQQC8TQqUUByE5SETN5RmbodKCVyXK8z_zJbtK6QgAlanUjC1fQ0_FLnQphYHfu0RNsYvBU0qUCjcWG8qCMXa-2Hc9pWt20bpTopvfPmdvjw_79RPfvmye16st91LCyEWpFWp02FR19pGiKluNsjbemzuqwXjlUVXQqlaT8A00phYAjozwzqCRc7aY7h7ciWw3tGGMzudqqO98GKjt8n6VXVAZaXQGxAT4GFKK1Nr32PUufloE-52RnTKyOSP7k5GVGZITlLJ4OFC0x_ARh_zYf9QXdBln6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Poisson-Based Processes at Geometric Times</title><source>Springer Link</source><creator>Meoli, Alessandra</creator><creatorcontrib>Meoli, Alessandra</creatorcontrib><description>We consider the composition of three different stochastic processes with an independent geometric random time. First, the parent process is assumed to be a homogeneous Poisson process. We aim at providing the probability law of the derived process in terms of the geometric polynomials, the governing equations, its representation as a random sum and establishing its main properties. We study stochastic comparisons and the first-crossing-time problem as well. Next, we take as outer processes both an additive and a multiplicative compound Poisson process. We derive the explicit expression of the distribution of the resulting processes and of their moments and then focus on some special cases. Potential applications are also discussed.</description><identifier>ISSN: 1572-9613</identifier><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-023-03117-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Laws, regulations and rules ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Stochastic processes ; Theoretical</subject><ispartof>Journal of statistical physics, 2023-05, Vol.190 (6), Article 107</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183</citedby><cites>FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183</cites><orcidid>0000-0002-3516-9530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Meoli, Alessandra</creatorcontrib><title>Some Poisson-Based Processes at Geometric Times</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We consider the composition of three different stochastic processes with an independent geometric random time. First, the parent process is assumed to be a homogeneous Poisson process. We aim at providing the probability law of the derived process in terms of the geometric polynomials, the governing equations, its representation as a random sum and establishing its main properties. We study stochastic comparisons and the first-crossing-time problem as well. Next, we take as outer processes both an additive and a multiplicative compound Poisson process. We derive the explicit expression of the distribution of the resulting processes and of their moments and then focus on some special cases. Potential applications are also discussed.</description><subject>Analysis</subject><subject>Laws, regulations and rules</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Stochastic processes</subject><subject>Theoretical</subject><issn>1572-9613</issn><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwApz6AtnshDTpcUwwkCYxiXGO0tSdOq0NSsqBtydQDpyQD7as__Mv_4zdIiwQQC8TQqUUByE5SETN5RmbodKCVyXK8z_zJbtK6QgAlanUjC1fQ0_FLnQphYHfu0RNsYvBU0qUCjcWG8qCMXa-2Hc9pWt20bpTopvfPmdvjw_79RPfvmye16st91LCyEWpFWp02FR19pGiKluNsjbemzuqwXjlUVXQqlaT8A00phYAjozwzqCRc7aY7h7ciWw3tGGMzudqqO98GKjt8n6VXVAZaXQGxAT4GFKK1Nr32PUufloE-52RnTKyOSP7k5GVGZITlLJ4OFC0x_ARh_zYf9QXdBln6w</recordid><startdate>20230529</startdate><enddate>20230529</enddate><creator>Meoli, Alessandra</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3516-9530</orcidid></search><sort><creationdate>20230529</creationdate><title>Some Poisson-Based Processes at Geometric Times</title><author>Meoli, Alessandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Laws, regulations and rules</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Stochastic processes</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meoli, Alessandra</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meoli, Alessandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Poisson-Based Processes at Geometric Times</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2023-05-29</date><risdate>2023</risdate><volume>190</volume><issue>6</issue><artnum>107</artnum><issn>1572-9613</issn><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We consider the composition of three different stochastic processes with an independent geometric random time. First, the parent process is assumed to be a homogeneous Poisson process. We aim at providing the probability law of the derived process in terms of the geometric polynomials, the governing equations, its representation as a random sum and establishing its main properties. We study stochastic comparisons and the first-crossing-time problem as well. Next, we take as outer processes both an additive and a multiplicative compound Poisson process. We derive the explicit expression of the distribution of the resulting processes and of their moments and then focus on some special cases. Potential applications are also discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-023-03117-3</doi><orcidid>https://orcid.org/0000-0002-3516-9530</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1572-9613
ispartof Journal of statistical physics, 2023-05, Vol.190 (6), Article 107
issn 1572-9613
0022-4715
1572-9613
language eng
recordid cdi_gale_infotracacademiconefile_A751158387
source Springer Link
subjects Analysis
Laws, regulations and rules
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Stochastic processes
Theoretical
title Some Poisson-Based Processes at Geometric Times
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Poisson-Based%20Processes%20at%20Geometric%20Times&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Meoli,%20Alessandra&rft.date=2023-05-29&rft.volume=190&rft.issue=6&rft.artnum=107&rft.issn=1572-9613&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-023-03117-3&rft_dat=%3Cgale_cross%3EA751158387%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-2675171a1d9b8953296f713b8cc84eb08c5c1590f5f7e2cd0d8b200ae82ca8183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A751158387&rfr_iscdi=true