Loading…
Existence Results for Nonlinear Fractional Differential Inclusions via Iq/I-ROF Fixed Point
Fractional Differential inclusions, the multivalued version of fractional differential equations, yellow play a vital role in various fields of applied sciences. In the present article, a class of q-rung orthopair fuzzy (q-ROF) set valued mappings along with q-ROF upper/lower semi-continuity have be...
Saved in:
Published in: | Fractal and fractional 2022-12, Vol.7 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Fractal and fractional |
container_volume | 7 |
creator | Shahid, Lariab Rashid, Maliha Azam, Akbar Ali, Faryad |
description | Fractional Differential inclusions, the multivalued version of fractional differential equations, yellow play a vital role in various fields of applied sciences. In the present article, a class of q-rung orthopair fuzzy (q-ROF) set valued mappings along with q-ROF upper/lower semi-continuity have been introduced. Based on these ideas, existence theorems for a numerical solution of a distinct class of fractional differential inclusions have been achieved with the help of Schaefer type and Banach contraction fixed point theorems. A physical example is also provided to validate the hypothesis of the main results. The notion of q-rung orthopair fuzzy mappings along with the use of fixed point techniques and a new-fangled Caputo type fractional derivative are the principal novelty of this article. |
doi_str_mv | 10.3390/fractalfract7010041 |
format | article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A752115385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752115385</galeid><sourcerecordid>A752115385</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7521153853</originalsourceid><addsrcrecordid>eNqVTE1PAjEQbYgmEuUXeJk_sDDd0iwcibBxL2KINw-mWaZmSJ3GbSH8fIrx4NW8w_vKe0o9apwas8SZH1yfXfihBjXiXI_UuLY4r4zWePNH36lJSgdErJulsdiM1fvmzCmT9AQ7SseQE_g4wEuUwEJugPZ6y1FcgDV7TwNJ5mI66cMxlSLBiR1037Ou2m1baPlMe3iNLPlB3XoXEk1--V5N283b03P16QJ9sPiYy3nBnr64j0KeS75qbK21NQtr_j24AGhDVGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Existence Results for Nonlinear Fractional Differential Inclusions via Iq/I-ROF Fixed Point</title><source>Publicly Available Content Database</source><creator>Shahid, Lariab ; Rashid, Maliha ; Azam, Akbar ; Ali, Faryad</creator><creatorcontrib>Shahid, Lariab ; Rashid, Maliha ; Azam, Akbar ; Ali, Faryad</creatorcontrib><description>Fractional Differential inclusions, the multivalued version of fractional differential equations, yellow play a vital role in various fields of applied sciences. In the present article, a class of q-rung orthopair fuzzy (q-ROF) set valued mappings along with q-ROF upper/lower semi-continuity have been introduced. Based on these ideas, existence theorems for a numerical solution of a distinct class of fractional differential inclusions have been achieved with the help of Schaefer type and Banach contraction fixed point theorems. A physical example is also provided to validate the hypothesis of the main results. The notion of q-rung orthopair fuzzy mappings along with the use of fixed point techniques and a new-fangled Caputo type fractional derivative are the principal novelty of this article.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract7010041</identifier><language>eng</language><publisher>MDPI AG</publisher><ispartof>Fractal and fractional, 2022-12, Vol.7 (1)</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shahid, Lariab</creatorcontrib><creatorcontrib>Rashid, Maliha</creatorcontrib><creatorcontrib>Azam, Akbar</creatorcontrib><creatorcontrib>Ali, Faryad</creatorcontrib><title>Existence Results for Nonlinear Fractional Differential Inclusions via Iq/I-ROF Fixed Point</title><title>Fractal and fractional</title><description>Fractional Differential inclusions, the multivalued version of fractional differential equations, yellow play a vital role in various fields of applied sciences. In the present article, a class of q-rung orthopair fuzzy (q-ROF) set valued mappings along with q-ROF upper/lower semi-continuity have been introduced. Based on these ideas, existence theorems for a numerical solution of a distinct class of fractional differential inclusions have been achieved with the help of Schaefer type and Banach contraction fixed point theorems. A physical example is also provided to validate the hypothesis of the main results. The notion of q-rung orthopair fuzzy mappings along with the use of fixed point techniques and a new-fangled Caputo type fractional derivative are the principal novelty of this article.</description><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVTE1PAjEQbYgmEuUXeJk_sDDd0iwcibBxL2KINw-mWaZmSJ3GbSH8fIrx4NW8w_vKe0o9apwas8SZH1yfXfihBjXiXI_UuLY4r4zWePNH36lJSgdErJulsdiM1fvmzCmT9AQ7SseQE_g4wEuUwEJugPZ6y1FcgDV7TwNJ5mI66cMxlSLBiR1037Ou2m1baPlMe3iNLPlB3XoXEk1--V5N283b03P16QJ9sPiYy3nBnr64j0KeS75qbK21NQtr_j24AGhDVGQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Shahid, Lariab</creator><creator>Rashid, Maliha</creator><creator>Azam, Akbar</creator><creator>Ali, Faryad</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20221201</creationdate><title>Existence Results for Nonlinear Fractional Differential Inclusions via Iq/I-ROF Fixed Point</title><author>Shahid, Lariab ; Rashid, Maliha ; Azam, Akbar ; Ali, Faryad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7521153853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahid, Lariab</creatorcontrib><creatorcontrib>Rashid, Maliha</creatorcontrib><creatorcontrib>Azam, Akbar</creatorcontrib><creatorcontrib>Ali, Faryad</creatorcontrib><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahid, Lariab</au><au>Rashid, Maliha</au><au>Azam, Akbar</au><au>Ali, Faryad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence Results for Nonlinear Fractional Differential Inclusions via Iq/I-ROF Fixed Point</atitle><jtitle>Fractal and fractional</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>7</volume><issue>1</issue><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>Fractional Differential inclusions, the multivalued version of fractional differential equations, yellow play a vital role in various fields of applied sciences. In the present article, a class of q-rung orthopair fuzzy (q-ROF) set valued mappings along with q-ROF upper/lower semi-continuity have been introduced. Based on these ideas, existence theorems for a numerical solution of a distinct class of fractional differential inclusions have been achieved with the help of Schaefer type and Banach contraction fixed point theorems. A physical example is also provided to validate the hypothesis of the main results. The notion of q-rung orthopair fuzzy mappings along with the use of fixed point techniques and a new-fangled Caputo type fractional derivative are the principal novelty of this article.</abstract><pub>MDPI AG</pub><doi>10.3390/fractalfract7010041</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-3110 |
ispartof | Fractal and fractional, 2022-12, Vol.7 (1) |
issn | 2504-3110 2504-3110 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A752115385 |
source | Publicly Available Content Database |
title | Existence Results for Nonlinear Fractional Differential Inclusions via Iq/I-ROF Fixed Point |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20Results%20for%20Nonlinear%20Fractional%20Differential%20Inclusions%20via%20Iq/I-ROF%20Fixed%20Point&rft.jtitle=Fractal%20and%20fractional&rft.au=Shahid,%20Lariab&rft.date=2022-12-01&rft.volume=7&rft.issue=1&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract7010041&rft_dat=%3Cgale%3EA752115385%3C/gale%3E%3Cgrp_id%3Ecdi_FETCH-gale_infotracacademiconefile_A7521153853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A752115385&rfr_iscdi=true |