Loading…
New Network Polymer Electrolytes Based on Ionic Liquid and SiO[sub.2] Nanoparticles for Energy Storage Systems
Elementary processes of electro mass transfer in the nanocomposite polymer electrolyte system by pulse field gradient, spin echo NMR spectroscopy and the high-resolution NMR method together with electrochemical impedance spectroscopy are examined. The new nanocomposite polymer gel electrolytes consi...
Saved in:
Published in: | Membranes 2023, Vol.13 (6) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Report |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | Membranes |
container_volume | 13 |
creator | Khatmullina, Kyunsylu G Slesarenko, Nikita A Chernyak, Alexander V Baymuratova, Guzaliya R Yudina, Alena V Berezin, Mikhail P Tulibaeva, Galiya Z Slesarenko, Anna A Shestakov, Alexander F Yarmolenko, Olga V |
description | Elementary processes of electro mass transfer in the nanocomposite polymer electrolyte system by pulse field gradient, spin echo NMR spectroscopy and the high-resolution NMR method together with electrochemical impedance spectroscopy are examined. The new nanocomposite polymer gel electrolytes consisted of polyethylene glycol diacrylate (PEGDA), salt LiBF[sub.4] and 1—ethyl—3—methylimidazolium tetrafluoroborate (EMIBF[sub.4] ) and SiO[sub.2] nanoparticles. Kinetics of the PEGDA matrix formation was studied by isothermal calorimetry. The flexible polymer–ionic liquid films were studied by IRFT spectroscopy, differential scanning calorimetry and temperature gravimetric analysis. The total conductivity in these systems was about 10[sup.−4] S cm[sup.−1] (−40 °C), 10[sup.−3] S cm[sup.−1] (25 °C) and 10[sup.−2] S cm[sup.−1] (100 °C). The method of quantum-chemical modeling of the interaction of SiO[sub.2] nanoparticles with ions showed the advantage of the mixed adsorption process, in which a negatively charged surface layer is formed from Li[sup.+] BF[sub.4] [sup.—] ions on silicon dioxide particles and then from ions of the ionic liquid EMI[sup.+] BF[sub.4] [sup.−] . These electrolytes are promising for use both in lithium power sources and in supercapacitors. The paper shows preliminary tests of a lithium cell with an organic electrode based on a pentaazapentacene derivative for 110 charge–discharge cycles. |
doi_str_mv | 10.3390/membranes13060548 |
format | report |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A758396039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758396039</galeid><sourcerecordid>A758396039</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7583960393</originalsourceid><addsrcrecordid>eNqVTMtOwzAQtBBIVNAP4LY_0LCtSdIcARWBhAJSeqsQcp1NZLDXYLuq8vf4wIErO4d5aGaFuFpiIWWD147cPiimuJRYYXmzPhGzFdb1AmVdnv7R52Ie4wfmy7VK4kxwS0doKR19-IRXbydHATaWdArZJIpwpyL14BmePBsNz-b7YHpQ3ENnXnbxsC9Wb9Aq9l8qJKNtngw-_2AK4wRd8kGNBN0UE7l4Kc4GZSPNf_lCFA-b7f3jYlSW3g0PPgWlM3pyRnumweT8ti7XsqlQNvLfgx9NNlqv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>New Network Polymer Electrolytes Based on Ionic Liquid and SiO[sub.2] Nanoparticles for Energy Storage Systems</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Khatmullina, Kyunsylu G ; Slesarenko, Nikita A ; Chernyak, Alexander V ; Baymuratova, Guzaliya R ; Yudina, Alena V ; Berezin, Mikhail P ; Tulibaeva, Galiya Z ; Slesarenko, Anna A ; Shestakov, Alexander F ; Yarmolenko, Olga V</creator><creatorcontrib>Khatmullina, Kyunsylu G ; Slesarenko, Nikita A ; Chernyak, Alexander V ; Baymuratova, Guzaliya R ; Yudina, Alena V ; Berezin, Mikhail P ; Tulibaeva, Galiya Z ; Slesarenko, Anna A ; Shestakov, Alexander F ; Yarmolenko, Olga V</creatorcontrib><description>Elementary processes of electro mass transfer in the nanocomposite polymer electrolyte system by pulse field gradient, spin echo NMR spectroscopy and the high-resolution NMR method together with electrochemical impedance spectroscopy are examined. The new nanocomposite polymer gel electrolytes consisted of polyethylene glycol diacrylate (PEGDA), salt LiBF[sub.4] and 1—ethyl—3—methylimidazolium tetrafluoroborate (EMIBF[sub.4] ) and SiO[sub.2] nanoparticles. Kinetics of the PEGDA matrix formation was studied by isothermal calorimetry. The flexible polymer–ionic liquid films were studied by IRFT spectroscopy, differential scanning calorimetry and temperature gravimetric analysis. The total conductivity in these systems was about 10[sup.−4] S cm[sup.−1] (−40 °C), 10[sup.−3] S cm[sup.−1] (25 °C) and 10[sup.−2] S cm[sup.−1] (100 °C). The method of quantum-chemical modeling of the interaction of SiO[sub.2] nanoparticles with ions showed the advantage of the mixed adsorption process, in which a negatively charged surface layer is formed from Li[sup.+] BF[sub.4] [sup.—] ions on silicon dioxide particles and then from ions of the ionic liquid EMI[sup.+] BF[sub.4] [sup.−] . These electrolytes are promising for use both in lithium power sources and in supercapacitors. The paper shows preliminary tests of a lithium cell with an organic electrode based on a pentaazapentacene derivative for 110 charge–discharge cycles.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes13060548</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Energy storage ; Ionic liquids ; Methods ; Nanoparticles ; Polyelectrolytes</subject><ispartof>Membranes, 2023, Vol.13 (6)</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,4476,27902</link.rule.ids></links><search><creatorcontrib>Khatmullina, Kyunsylu G</creatorcontrib><creatorcontrib>Slesarenko, Nikita A</creatorcontrib><creatorcontrib>Chernyak, Alexander V</creatorcontrib><creatorcontrib>Baymuratova, Guzaliya R</creatorcontrib><creatorcontrib>Yudina, Alena V</creatorcontrib><creatorcontrib>Berezin, Mikhail P</creatorcontrib><creatorcontrib>Tulibaeva, Galiya Z</creatorcontrib><creatorcontrib>Slesarenko, Anna A</creatorcontrib><creatorcontrib>Shestakov, Alexander F</creatorcontrib><creatorcontrib>Yarmolenko, Olga V</creatorcontrib><title>New Network Polymer Electrolytes Based on Ionic Liquid and SiO[sub.2] Nanoparticles for Energy Storage Systems</title><title>Membranes</title><description>Elementary processes of electro mass transfer in the nanocomposite polymer electrolyte system by pulse field gradient, spin echo NMR spectroscopy and the high-resolution NMR method together with electrochemical impedance spectroscopy are examined. The new nanocomposite polymer gel electrolytes consisted of polyethylene glycol diacrylate (PEGDA), salt LiBF[sub.4] and 1—ethyl—3—methylimidazolium tetrafluoroborate (EMIBF[sub.4] ) and SiO[sub.2] nanoparticles. Kinetics of the PEGDA matrix formation was studied by isothermal calorimetry. The flexible polymer–ionic liquid films were studied by IRFT spectroscopy, differential scanning calorimetry and temperature gravimetric analysis. The total conductivity in these systems was about 10[sup.−4] S cm[sup.−1] (−40 °C), 10[sup.−3] S cm[sup.−1] (25 °C) and 10[sup.−2] S cm[sup.−1] (100 °C). The method of quantum-chemical modeling of the interaction of SiO[sub.2] nanoparticles with ions showed the advantage of the mixed adsorption process, in which a negatively charged surface layer is formed from Li[sup.+] BF[sub.4] [sup.—] ions on silicon dioxide particles and then from ions of the ionic liquid EMI[sup.+] BF[sub.4] [sup.−] . These electrolytes are promising for use both in lithium power sources and in supercapacitors. The paper shows preliminary tests of a lithium cell with an organic electrode based on a pentaazapentacene derivative for 110 charge–discharge cycles.</description><subject>Energy storage</subject><subject>Ionic liquids</subject><subject>Methods</subject><subject>Nanoparticles</subject><subject>Polyelectrolytes</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2023</creationdate><recordtype>report</recordtype><sourceid/><recordid>eNqVTMtOwzAQtBBIVNAP4LY_0LCtSdIcARWBhAJSeqsQcp1NZLDXYLuq8vf4wIErO4d5aGaFuFpiIWWD147cPiimuJRYYXmzPhGzFdb1AmVdnv7R52Ie4wfmy7VK4kxwS0doKR19-IRXbydHATaWdArZJIpwpyL14BmePBsNz-b7YHpQ3ENnXnbxsC9Wb9Aq9l8qJKNtngw-_2AK4wRd8kGNBN0UE7l4Kc4GZSPNf_lCFA-b7f3jYlSW3g0PPgWlM3pyRnumweT8ti7XsqlQNvLfgx9NNlqv</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Khatmullina, Kyunsylu G</creator><creator>Slesarenko, Nikita A</creator><creator>Chernyak, Alexander V</creator><creator>Baymuratova, Guzaliya R</creator><creator>Yudina, Alena V</creator><creator>Berezin, Mikhail P</creator><creator>Tulibaeva, Galiya Z</creator><creator>Slesarenko, Anna A</creator><creator>Shestakov, Alexander F</creator><creator>Yarmolenko, Olga V</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20230501</creationdate><title>New Network Polymer Electrolytes Based on Ionic Liquid and SiO[sub.2] Nanoparticles for Energy Storage Systems</title><author>Khatmullina, Kyunsylu G ; Slesarenko, Nikita A ; Chernyak, Alexander V ; Baymuratova, Guzaliya R ; Yudina, Alena V ; Berezin, Mikhail P ; Tulibaeva, Galiya Z ; Slesarenko, Anna A ; Shestakov, Alexander F ; Yarmolenko, Olga V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7583960393</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy storage</topic><topic>Ionic liquids</topic><topic>Methods</topic><topic>Nanoparticles</topic><topic>Polyelectrolytes</topic><toplevel>online_resources</toplevel><creatorcontrib>Khatmullina, Kyunsylu G</creatorcontrib><creatorcontrib>Slesarenko, Nikita A</creatorcontrib><creatorcontrib>Chernyak, Alexander V</creatorcontrib><creatorcontrib>Baymuratova, Guzaliya R</creatorcontrib><creatorcontrib>Yudina, Alena V</creatorcontrib><creatorcontrib>Berezin, Mikhail P</creatorcontrib><creatorcontrib>Tulibaeva, Galiya Z</creatorcontrib><creatorcontrib>Slesarenko, Anna A</creatorcontrib><creatorcontrib>Shestakov, Alexander F</creatorcontrib><creatorcontrib>Yarmolenko, Olga V</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatmullina, Kyunsylu G</au><au>Slesarenko, Nikita A</au><au>Chernyak, Alexander V</au><au>Baymuratova, Guzaliya R</au><au>Yudina, Alena V</au><au>Berezin, Mikhail P</au><au>Tulibaeva, Galiya Z</au><au>Slesarenko, Anna A</au><au>Shestakov, Alexander F</au><au>Yarmolenko, Olga V</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><atitle>New Network Polymer Electrolytes Based on Ionic Liquid and SiO[sub.2] Nanoparticles for Energy Storage Systems</atitle><jtitle>Membranes</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>13</volume><issue>6</issue><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Elementary processes of electro mass transfer in the nanocomposite polymer electrolyte system by pulse field gradient, spin echo NMR spectroscopy and the high-resolution NMR method together with electrochemical impedance spectroscopy are examined. The new nanocomposite polymer gel electrolytes consisted of polyethylene glycol diacrylate (PEGDA), salt LiBF[sub.4] and 1—ethyl—3—methylimidazolium tetrafluoroborate (EMIBF[sub.4] ) and SiO[sub.2] nanoparticles. Kinetics of the PEGDA matrix formation was studied by isothermal calorimetry. The flexible polymer–ionic liquid films were studied by IRFT spectroscopy, differential scanning calorimetry and temperature gravimetric analysis. The total conductivity in these systems was about 10[sup.−4] S cm[sup.−1] (−40 °C), 10[sup.−3] S cm[sup.−1] (25 °C) and 10[sup.−2] S cm[sup.−1] (100 °C). The method of quantum-chemical modeling of the interaction of SiO[sub.2] nanoparticles with ions showed the advantage of the mixed adsorption process, in which a negatively charged surface layer is formed from Li[sup.+] BF[sub.4] [sup.—] ions on silicon dioxide particles and then from ions of the ionic liquid EMI[sup.+] BF[sub.4] [sup.−] . These electrolytes are promising for use both in lithium power sources and in supercapacitors. The paper shows preliminary tests of a lithium cell with an organic electrode based on a pentaazapentacene derivative for 110 charge–discharge cycles.</abstract><pub>MDPI AG</pub><doi>10.3390/membranes13060548</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0375 |
ispartof | Membranes, 2023, Vol.13 (6) |
issn | 2077-0375 2077-0375 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A758396039 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | Energy storage Ionic liquids Methods Nanoparticles Polyelectrolytes |
title | New Network Polymer Electrolytes Based on Ionic Liquid and SiO[sub.2] Nanoparticles for Energy Storage Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.atitle=New%20Network%20Polymer%20Electrolytes%20Based%20on%20Ionic%20Liquid%20and%20SiO%5Bsub.2%5D%20Nanoparticles%20for%20Energy%20Storage%20Systems&rft.jtitle=Membranes&rft.au=Khatmullina,%20Kyunsylu%20G&rft.date=2023-05-01&rft.volume=13&rft.issue=6&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes13060548&rft_dat=%3Cgale%3EA758396039%3C/gale%3E%3Cgrp_id%3Ecdi_FETCH-gale_infotracacademiconefile_A7583960393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A758396039&rfr_iscdi=true |