Loading…

New Network Polymer Electrolytes Based on Ionic Liquid and SiO[sub.2] Nanoparticles for Energy Storage Systems

Elementary processes of electro mass transfer in the nanocomposite polymer electrolyte system by pulse field gradient, spin echo NMR spectroscopy and the high-resolution NMR method together with electrochemical impedance spectroscopy are examined. The new nanocomposite polymer gel electrolytes consi...

Full description

Saved in:
Bibliographic Details
Published in:Membranes 2023, Vol.13 (6)
Main Authors: Khatmullina, Kyunsylu G, Slesarenko, Nikita A, Chernyak, Alexander V, Baymuratova, Guzaliya R, Yudina, Alena V, Berezin, Mikhail P, Tulibaeva, Galiya Z, Slesarenko, Anna A, Shestakov, Alexander F, Yarmolenko, Olga V
Format: Report
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 6
container_start_page
container_title Membranes
container_volume 13
creator Khatmullina, Kyunsylu G
Slesarenko, Nikita A
Chernyak, Alexander V
Baymuratova, Guzaliya R
Yudina, Alena V
Berezin, Mikhail P
Tulibaeva, Galiya Z
Slesarenko, Anna A
Shestakov, Alexander F
Yarmolenko, Olga V
description Elementary processes of electro mass transfer in the nanocomposite polymer electrolyte system by pulse field gradient, spin echo NMR spectroscopy and the high-resolution NMR method together with electrochemical impedance spectroscopy are examined. The new nanocomposite polymer gel electrolytes consisted of polyethylene glycol diacrylate (PEGDA), salt LiBF[sub.4] and 1—ethyl—3—methylimidazolium tetrafluoroborate (EMIBF[sub.4] ) and SiO[sub.2] nanoparticles. Kinetics of the PEGDA matrix formation was studied by isothermal calorimetry. The flexible polymer–ionic liquid films were studied by IRFT spectroscopy, differential scanning calorimetry and temperature gravimetric analysis. The total conductivity in these systems was about 10[sup.−4] S cm[sup.−1] (−40 °C), 10[sup.−3] S cm[sup.−1] (25 °C) and 10[sup.−2] S cm[sup.−1] (100 °C). The method of quantum-chemical modeling of the interaction of SiO[sub.2] nanoparticles with ions showed the advantage of the mixed adsorption process, in which a negatively charged surface layer is formed from Li[sup.+] BF[sub.4] [sup.—] ions on silicon dioxide particles and then from ions of the ionic liquid EMI[sup.+] BF[sub.4] [sup.−] . These electrolytes are promising for use both in lithium power sources and in supercapacitors. The paper shows preliminary tests of a lithium cell with an organic electrode based on a pentaazapentacene derivative for 110 charge–discharge cycles.
doi_str_mv 10.3390/membranes13060548
format report
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A758396039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758396039</galeid><sourcerecordid>A758396039</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7583960393</originalsourceid><addsrcrecordid>eNqVTMtOwzAQtBBIVNAP4LY_0LCtSdIcARWBhAJSeqsQcp1NZLDXYLuq8vf4wIErO4d5aGaFuFpiIWWD147cPiimuJRYYXmzPhGzFdb1AmVdnv7R52Ie4wfmy7VK4kxwS0doKR19-IRXbydHATaWdArZJIpwpyL14BmePBsNz-b7YHpQ3ENnXnbxsC9Wb9Aq9l8qJKNtngw-_2AK4wRd8kGNBN0UE7l4Kc4GZSPNf_lCFA-b7f3jYlSW3g0PPgWlM3pyRnumweT8ti7XsqlQNvLfgx9NNlqv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>New Network Polymer Electrolytes Based on Ionic Liquid and SiO[sub.2] Nanoparticles for Energy Storage Systems</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Khatmullina, Kyunsylu G ; Slesarenko, Nikita A ; Chernyak, Alexander V ; Baymuratova, Guzaliya R ; Yudina, Alena V ; Berezin, Mikhail P ; Tulibaeva, Galiya Z ; Slesarenko, Anna A ; Shestakov, Alexander F ; Yarmolenko, Olga V</creator><creatorcontrib>Khatmullina, Kyunsylu G ; Slesarenko, Nikita A ; Chernyak, Alexander V ; Baymuratova, Guzaliya R ; Yudina, Alena V ; Berezin, Mikhail P ; Tulibaeva, Galiya Z ; Slesarenko, Anna A ; Shestakov, Alexander F ; Yarmolenko, Olga V</creatorcontrib><description>Elementary processes of electro mass transfer in the nanocomposite polymer electrolyte system by pulse field gradient, spin echo NMR spectroscopy and the high-resolution NMR method together with electrochemical impedance spectroscopy are examined. The new nanocomposite polymer gel electrolytes consisted of polyethylene glycol diacrylate (PEGDA), salt LiBF[sub.4] and 1—ethyl—3—methylimidazolium tetrafluoroborate (EMIBF[sub.4] ) and SiO[sub.2] nanoparticles. Kinetics of the PEGDA matrix formation was studied by isothermal calorimetry. The flexible polymer–ionic liquid films were studied by IRFT spectroscopy, differential scanning calorimetry and temperature gravimetric analysis. The total conductivity in these systems was about 10[sup.−4] S cm[sup.−1] (−40 °C), 10[sup.−3] S cm[sup.−1] (25 °C) and 10[sup.−2] S cm[sup.−1] (100 °C). The method of quantum-chemical modeling of the interaction of SiO[sub.2] nanoparticles with ions showed the advantage of the mixed adsorption process, in which a negatively charged surface layer is formed from Li[sup.+] BF[sub.4] [sup.—] ions on silicon dioxide particles and then from ions of the ionic liquid EMI[sup.+] BF[sub.4] [sup.−] . These electrolytes are promising for use both in lithium power sources and in supercapacitors. The paper shows preliminary tests of a lithium cell with an organic electrode based on a pentaazapentacene derivative for 110 charge–discharge cycles.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes13060548</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Energy storage ; Ionic liquids ; Methods ; Nanoparticles ; Polyelectrolytes</subject><ispartof>Membranes, 2023, Vol.13 (6)</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,4476,27902</link.rule.ids></links><search><creatorcontrib>Khatmullina, Kyunsylu G</creatorcontrib><creatorcontrib>Slesarenko, Nikita A</creatorcontrib><creatorcontrib>Chernyak, Alexander V</creatorcontrib><creatorcontrib>Baymuratova, Guzaliya R</creatorcontrib><creatorcontrib>Yudina, Alena V</creatorcontrib><creatorcontrib>Berezin, Mikhail P</creatorcontrib><creatorcontrib>Tulibaeva, Galiya Z</creatorcontrib><creatorcontrib>Slesarenko, Anna A</creatorcontrib><creatorcontrib>Shestakov, Alexander F</creatorcontrib><creatorcontrib>Yarmolenko, Olga V</creatorcontrib><title>New Network Polymer Electrolytes Based on Ionic Liquid and SiO[sub.2] Nanoparticles for Energy Storage Systems</title><title>Membranes</title><description>Elementary processes of electro mass transfer in the nanocomposite polymer electrolyte system by pulse field gradient, spin echo NMR spectroscopy and the high-resolution NMR method together with electrochemical impedance spectroscopy are examined. The new nanocomposite polymer gel electrolytes consisted of polyethylene glycol diacrylate (PEGDA), salt LiBF[sub.4] and 1—ethyl—3—methylimidazolium tetrafluoroborate (EMIBF[sub.4] ) and SiO[sub.2] nanoparticles. Kinetics of the PEGDA matrix formation was studied by isothermal calorimetry. The flexible polymer–ionic liquid films were studied by IRFT spectroscopy, differential scanning calorimetry and temperature gravimetric analysis. The total conductivity in these systems was about 10[sup.−4] S cm[sup.−1] (−40 °C), 10[sup.−3] S cm[sup.−1] (25 °C) and 10[sup.−2] S cm[sup.−1] (100 °C). The method of quantum-chemical modeling of the interaction of SiO[sub.2] nanoparticles with ions showed the advantage of the mixed adsorption process, in which a negatively charged surface layer is formed from Li[sup.+] BF[sub.4] [sup.—] ions on silicon dioxide particles and then from ions of the ionic liquid EMI[sup.+] BF[sub.4] [sup.−] . These electrolytes are promising for use both in lithium power sources and in supercapacitors. The paper shows preliminary tests of a lithium cell with an organic electrode based on a pentaazapentacene derivative for 110 charge–discharge cycles.</description><subject>Energy storage</subject><subject>Ionic liquids</subject><subject>Methods</subject><subject>Nanoparticles</subject><subject>Polyelectrolytes</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2023</creationdate><recordtype>report</recordtype><sourceid/><recordid>eNqVTMtOwzAQtBBIVNAP4LY_0LCtSdIcARWBhAJSeqsQcp1NZLDXYLuq8vf4wIErO4d5aGaFuFpiIWWD147cPiimuJRYYXmzPhGzFdb1AmVdnv7R52Ie4wfmy7VK4kxwS0doKR19-IRXbydHATaWdArZJIpwpyL14BmePBsNz-b7YHpQ3ENnXnbxsC9Wb9Aq9l8qJKNtngw-_2AK4wRd8kGNBN0UE7l4Kc4GZSPNf_lCFA-b7f3jYlSW3g0PPgWlM3pyRnumweT8ti7XsqlQNvLfgx9NNlqv</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Khatmullina, Kyunsylu G</creator><creator>Slesarenko, Nikita A</creator><creator>Chernyak, Alexander V</creator><creator>Baymuratova, Guzaliya R</creator><creator>Yudina, Alena V</creator><creator>Berezin, Mikhail P</creator><creator>Tulibaeva, Galiya Z</creator><creator>Slesarenko, Anna A</creator><creator>Shestakov, Alexander F</creator><creator>Yarmolenko, Olga V</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20230501</creationdate><title>New Network Polymer Electrolytes Based on Ionic Liquid and SiO[sub.2] Nanoparticles for Energy Storage Systems</title><author>Khatmullina, Kyunsylu G ; Slesarenko, Nikita A ; Chernyak, Alexander V ; Baymuratova, Guzaliya R ; Yudina, Alena V ; Berezin, Mikhail P ; Tulibaeva, Galiya Z ; Slesarenko, Anna A ; Shestakov, Alexander F ; Yarmolenko, Olga V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7583960393</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy storage</topic><topic>Ionic liquids</topic><topic>Methods</topic><topic>Nanoparticles</topic><topic>Polyelectrolytes</topic><toplevel>online_resources</toplevel><creatorcontrib>Khatmullina, Kyunsylu G</creatorcontrib><creatorcontrib>Slesarenko, Nikita A</creatorcontrib><creatorcontrib>Chernyak, Alexander V</creatorcontrib><creatorcontrib>Baymuratova, Guzaliya R</creatorcontrib><creatorcontrib>Yudina, Alena V</creatorcontrib><creatorcontrib>Berezin, Mikhail P</creatorcontrib><creatorcontrib>Tulibaeva, Galiya Z</creatorcontrib><creatorcontrib>Slesarenko, Anna A</creatorcontrib><creatorcontrib>Shestakov, Alexander F</creatorcontrib><creatorcontrib>Yarmolenko, Olga V</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatmullina, Kyunsylu G</au><au>Slesarenko, Nikita A</au><au>Chernyak, Alexander V</au><au>Baymuratova, Guzaliya R</au><au>Yudina, Alena V</au><au>Berezin, Mikhail P</au><au>Tulibaeva, Galiya Z</au><au>Slesarenko, Anna A</au><au>Shestakov, Alexander F</au><au>Yarmolenko, Olga V</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><atitle>New Network Polymer Electrolytes Based on Ionic Liquid and SiO[sub.2] Nanoparticles for Energy Storage Systems</atitle><jtitle>Membranes</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>13</volume><issue>6</issue><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Elementary processes of electro mass transfer in the nanocomposite polymer electrolyte system by pulse field gradient, spin echo NMR spectroscopy and the high-resolution NMR method together with electrochemical impedance spectroscopy are examined. The new nanocomposite polymer gel electrolytes consisted of polyethylene glycol diacrylate (PEGDA), salt LiBF[sub.4] and 1—ethyl—3—methylimidazolium tetrafluoroborate (EMIBF[sub.4] ) and SiO[sub.2] nanoparticles. Kinetics of the PEGDA matrix formation was studied by isothermal calorimetry. The flexible polymer–ionic liquid films were studied by IRFT spectroscopy, differential scanning calorimetry and temperature gravimetric analysis. The total conductivity in these systems was about 10[sup.−4] S cm[sup.−1] (−40 °C), 10[sup.−3] S cm[sup.−1] (25 °C) and 10[sup.−2] S cm[sup.−1] (100 °C). The method of quantum-chemical modeling of the interaction of SiO[sub.2] nanoparticles with ions showed the advantage of the mixed adsorption process, in which a negatively charged surface layer is formed from Li[sup.+] BF[sub.4] [sup.—] ions on silicon dioxide particles and then from ions of the ionic liquid EMI[sup.+] BF[sub.4] [sup.−] . These electrolytes are promising for use both in lithium power sources and in supercapacitors. The paper shows preliminary tests of a lithium cell with an organic electrode based on a pentaazapentacene derivative for 110 charge–discharge cycles.</abstract><pub>MDPI AG</pub><doi>10.3390/membranes13060548</doi></addata></record>
fulltext fulltext
identifier ISSN: 2077-0375
ispartof Membranes, 2023, Vol.13 (6)
issn 2077-0375
2077-0375
language eng
recordid cdi_gale_infotracacademiconefile_A758396039
source PMC (PubMed Central); Publicly Available Content (ProQuest)
subjects Energy storage
Ionic liquids
Methods
Nanoparticles
Polyelectrolytes
title New Network Polymer Electrolytes Based on Ionic Liquid and SiO[sub.2] Nanoparticles for Energy Storage Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.atitle=New%20Network%20Polymer%20Electrolytes%20Based%20on%20Ionic%20Liquid%20and%20SiO%5Bsub.2%5D%20Nanoparticles%20for%20Energy%20Storage%20Systems&rft.jtitle=Membranes&rft.au=Khatmullina,%20Kyunsylu%20G&rft.date=2023-05-01&rft.volume=13&rft.issue=6&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes13060548&rft_dat=%3Cgale%3EA758396039%3C/gale%3E%3Cgrp_id%3Ecdi_FETCH-gale_infotracacademiconefile_A7583960393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A758396039&rfr_iscdi=true