Loading…
A Graph-Space Optimal Transport Approach Based on Kaniadakis Iκ/I-Gaussian Distribution for Inverse Problems Related to Wave Propagation
Data-centric inverse problems are a process of inferring physical attributes from indirect measurements. Full-waveform inversion (FWI) is a non-linear inverse problem that attempts to obtain a quantitative physical model by comparing the wave equation solution with observed data, optimizing an objec...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2023-06, Vol.25 (7) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Entropy (Basel, Switzerland) |
container_volume | 25 |
creator | da Silva, Sérgio Luiz E. F de Araújo, João M de la Barra, Erick Corso, Gilberto |
description | Data-centric inverse problems are a process of inferring physical attributes from indirect measurements. Full-waveform inversion (FWI) is a non-linear inverse problem that attempts to obtain a quantitative physical model by comparing the wave equation solution with observed data, optimizing an objective function. However, the FWI is strenuously dependent on a robust objective function, especially for dealing with cycle-skipping issues and non-Gaussian noises in the dataset. In this work, we present an objective function based on the Kaniadakis κ-Gaussian distribution and the optimal transport (OT) theory to mitigate non-Gaussian noise effects and phase ambiguity concerns that cause cycle skipping. We construct the κ-objective function using the probabilistic maximum likelihood procedure and include it within a well-posed version of the original OT formulation, known as the Kantorovich–Rubinstein metric. We represent the data in the graph space to satisfy the probability axioms required by the Kantorovich–Rubinstein framework. We call our proposal the κ-Graph-Space Optimal Transport FWI (κ-GSOT-FWI). The results suggest that the κ-GSOT-FWI is an effective procedure to circumvent the effects of non-Gaussian noise and cycle-skipping problems. They also show that the Kaniadakis κ-statistics significantly improve the FWI objective function convergence, resulting in higher-resolution models than classical techniques, especially when κ=0.6. |
doi_str_mv | 10.3390/e25070990 |
format | article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A759041114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759041114</galeid><sourcerecordid>A759041114</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7590411143</originalsourceid><addsrcrecordid>eNqVTEtOwzAUtBBIlMKCG7wLpLXjlCrL8CsRiyKoxBK9Ji-twbEtP7d34EocgjMREAu2aBYzmp8Q50pOtC7llPKZnMuylAdipAbOCi3l4R99LE6YX6XMda4uRuK9gkXEsM2eAjYEy5BMjxZWER0HHxNUIUSPzRYukakF7-AencEW3wxD_fkxrbMF7pgNOrg2nKJZ75IZap2PULs9RSZ4iH5tqWd4JItpuEkennH_EwTc4PfgVBx1aJnOfnksJrc3q6u7bIOWXozrfIrYDGipN4131JnBr-azUhZKqUL_e_AFeZhhBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Graph-Space Optimal Transport Approach Based on Kaniadakis Iκ/I-Gaussian Distribution for Inverse Problems Related to Wave Propagation</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>da Silva, Sérgio Luiz E. F ; de Araújo, João M ; de la Barra, Erick ; Corso, Gilberto</creator><creatorcontrib>da Silva, Sérgio Luiz E. F ; de Araújo, João M ; de la Barra, Erick ; Corso, Gilberto</creatorcontrib><description>Data-centric inverse problems are a process of inferring physical attributes from indirect measurements. Full-waveform inversion (FWI) is a non-linear inverse problem that attempts to obtain a quantitative physical model by comparing the wave equation solution with observed data, optimizing an objective function. However, the FWI is strenuously dependent on a robust objective function, especially for dealing with cycle-skipping issues and non-Gaussian noises in the dataset. In this work, we present an objective function based on the Kaniadakis κ-Gaussian distribution and the optimal transport (OT) theory to mitigate non-Gaussian noise effects and phase ambiguity concerns that cause cycle skipping. We construct the κ-objective function using the probabilistic maximum likelihood procedure and include it within a well-posed version of the original OT formulation, known as the Kantorovich–Rubinstein metric. We represent the data in the graph space to satisfy the probability axioms required by the Kantorovich–Rubinstein framework. We call our proposal the κ-Graph-Space Optimal Transport FWI (κ-GSOT-FWI). The results suggest that the κ-GSOT-FWI is an effective procedure to circumvent the effects of non-Gaussian noise and cycle-skipping problems. They also show that the Kaniadakis κ-statistics significantly improve the FWI objective function convergence, resulting in higher-resolution models than classical techniques, especially when κ=0.6.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e25070990</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Gaussian processes ; Noise control ; Wave propagation</subject><ispartof>Entropy (Basel, Switzerland), 2023-06, Vol.25 (7)</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>da Silva, Sérgio Luiz E. F</creatorcontrib><creatorcontrib>de Araújo, João M</creatorcontrib><creatorcontrib>de la Barra, Erick</creatorcontrib><creatorcontrib>Corso, Gilberto</creatorcontrib><title>A Graph-Space Optimal Transport Approach Based on Kaniadakis Iκ/I-Gaussian Distribution for Inverse Problems Related to Wave Propagation</title><title>Entropy (Basel, Switzerland)</title><description>Data-centric inverse problems are a process of inferring physical attributes from indirect measurements. Full-waveform inversion (FWI) is a non-linear inverse problem that attempts to obtain a quantitative physical model by comparing the wave equation solution with observed data, optimizing an objective function. However, the FWI is strenuously dependent on a robust objective function, especially for dealing with cycle-skipping issues and non-Gaussian noises in the dataset. In this work, we present an objective function based on the Kaniadakis κ-Gaussian distribution and the optimal transport (OT) theory to mitigate non-Gaussian noise effects and phase ambiguity concerns that cause cycle skipping. We construct the κ-objective function using the probabilistic maximum likelihood procedure and include it within a well-posed version of the original OT formulation, known as the Kantorovich–Rubinstein metric. We represent the data in the graph space to satisfy the probability axioms required by the Kantorovich–Rubinstein framework. We call our proposal the κ-Graph-Space Optimal Transport FWI (κ-GSOT-FWI). The results suggest that the κ-GSOT-FWI is an effective procedure to circumvent the effects of non-Gaussian noise and cycle-skipping problems. They also show that the Kaniadakis κ-statistics significantly improve the FWI objective function convergence, resulting in higher-resolution models than classical techniques, especially when κ=0.6.</description><subject>Gaussian processes</subject><subject>Noise control</subject><subject>Wave propagation</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVTEtOwzAUtBBIlMKCG7wLpLXjlCrL8CsRiyKoxBK9Ji-twbEtP7d34EocgjMREAu2aBYzmp8Q50pOtC7llPKZnMuylAdipAbOCi3l4R99LE6YX6XMda4uRuK9gkXEsM2eAjYEy5BMjxZWER0HHxNUIUSPzRYukakF7-AencEW3wxD_fkxrbMF7pgNOrg2nKJZ75IZap2PULs9RSZ4iH5tqWd4JItpuEkennH_EwTc4PfgVBx1aJnOfnksJrc3q6u7bIOWXozrfIrYDGipN4131JnBr-azUhZKqUL_e_AFeZhhBQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>da Silva, Sérgio Luiz E. F</creator><creator>de Araújo, João M</creator><creator>de la Barra, Erick</creator><creator>Corso, Gilberto</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20230601</creationdate><title>A Graph-Space Optimal Transport Approach Based on Kaniadakis Iκ/I-Gaussian Distribution for Inverse Problems Related to Wave Propagation</title><author>da Silva, Sérgio Luiz E. F ; de Araújo, João M ; de la Barra, Erick ; Corso, Gilberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7590411143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Gaussian processes</topic><topic>Noise control</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Sérgio Luiz E. F</creatorcontrib><creatorcontrib>de Araújo, João M</creatorcontrib><creatorcontrib>de la Barra, Erick</creatorcontrib><creatorcontrib>Corso, Gilberto</creatorcontrib><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, Sérgio Luiz E. F</au><au>de Araújo, João M</au><au>de la Barra, Erick</au><au>Corso, Gilberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Graph-Space Optimal Transport Approach Based on Kaniadakis Iκ/I-Gaussian Distribution for Inverse Problems Related to Wave Propagation</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>25</volume><issue>7</issue><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Data-centric inverse problems are a process of inferring physical attributes from indirect measurements. Full-waveform inversion (FWI) is a non-linear inverse problem that attempts to obtain a quantitative physical model by comparing the wave equation solution with observed data, optimizing an objective function. However, the FWI is strenuously dependent on a robust objective function, especially for dealing with cycle-skipping issues and non-Gaussian noises in the dataset. In this work, we present an objective function based on the Kaniadakis κ-Gaussian distribution and the optimal transport (OT) theory to mitigate non-Gaussian noise effects and phase ambiguity concerns that cause cycle skipping. We construct the κ-objective function using the probabilistic maximum likelihood procedure and include it within a well-posed version of the original OT formulation, known as the Kantorovich–Rubinstein metric. We represent the data in the graph space to satisfy the probability axioms required by the Kantorovich–Rubinstein framework. We call our proposal the κ-Graph-Space Optimal Transport FWI (κ-GSOT-FWI). The results suggest that the κ-GSOT-FWI is an effective procedure to circumvent the effects of non-Gaussian noise and cycle-skipping problems. They also show that the Kaniadakis κ-statistics significantly improve the FWI objective function convergence, resulting in higher-resolution models than classical techniques, especially when κ=0.6.</abstract><pub>MDPI AG</pub><doi>10.3390/e25070990</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2023-06, Vol.25 (7) |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A759041114 |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals; PubMed Central |
subjects | Gaussian processes Noise control Wave propagation |
title | A Graph-Space Optimal Transport Approach Based on Kaniadakis Iκ/I-Gaussian Distribution for Inverse Problems Related to Wave Propagation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Graph-Space%20Optimal%20Transport%20Approach%20Based%20on%20Kaniadakis%20I%CE%BA/I-Gaussian%20Distribution%20for%20Inverse%20Problems%20Related%20to%20Wave%20Propagation&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=da%20Silva,%20S%C3%A9rgio%20Luiz%20E.%20F&rft.date=2023-06-01&rft.volume=25&rft.issue=7&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e25070990&rft_dat=%3Cgale%3EA759041114%3C/gale%3E%3Cgrp_id%3Ecdi_FETCH-gale_infotracacademiconefile_A7590411143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A759041114&rfr_iscdi=true |