Loading…

The Construction of a High-Density Genetic Map for the Interspecific Cross of ICastanea mollissima × C. henryi/I and the Identification of QTLs for Leaf Traits

Chinese chestnut is an economically and ecologically valuable tree species that is extensively cultivated in China. Leaf traits play a vital role in the photosynthetic capacity, chestnut yield, and quality, making them important breeding objectives. However, there has been limited research on constr...

Full description

Saved in:
Bibliographic Details
Published in:Forests 2023-08, Vol.14 (8)
Main Authors: Jiang, Xibing, Wang, Yanpeng, Lai, Junsheng, Wu, Jian, Wu, Conglian, Hu, Weiyun, Wu, Xiaolong, Gong, Bangchu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chinese chestnut is an economically and ecologically valuable tree species that is extensively cultivated in China. Leaf traits play a vital role in the photosynthetic capacity, chestnut yield, and quality, making them important breeding objectives. However, there has been limited research on constructing high-density linkage maps of Chinese chestnut and conducting quantitative trait loci (QTL) analyses for these leaf traits. This knowledge gap has hindered the progress of selection in Chinese chestnut breeding. In this study, we selected a well-established interspecific F[sub.1] population, consisting of Castanea mollissima ‘Kuili’ × C. henryi ‘YLZ1’, to construct comprehensive genetic maps for chestnut. Through the use of a genotyping-by-sequencing (GBS) technique, we successfully created a high-density linkage map based on single-nucleotide polymorphisms (SNPs) from the F[sub.1] cross. The results showed that 4578 SNP markers were identified in the genetic linkage map, and the total length was 1812.46 cM, which was distributed throughout 12 linkage groups (LGs) with an average marker distance of 0.4 cM. Furthermore, we identified a total of 71 QTLs associated with nine chestnut leaf traits: chlorophyll b content (chlb), stomatal conductance (Gs), leaf area (LA), leaf dry weight (LDW), leaf fresh weight (LFW), leaf length (LL), leaf width (LW), petiole length (PL), and specific leaf weight (SLW). These QTLs were identified based on phenotypic data collected from 2017 to 2018. Notably, among the 71 QTLs, 29 major QTLs were found to control leaf area (LA), leaf dry weight (LDW), and leaf width (LW). The high-density genetic mapping and QTL identification related to leaf traits in this study will greatly facilitate marker-assisted selection (MAS) in chestnut breeding programs.
ISSN:1999-4907
1999-4907
DOI:10.3390/f14081684