Loading…

Probing the Bioinorganic Chemistry of Cu Spectroscopy

The two most common oxidation states of copper in biochemistry are Cu(II) and Cu(I), and while Cu(II) lends itself to spectroscopic interrogation, Cu(I) is silent in most techniques. Ag(I) and Cu(I) are both closed-shell d[sup.10] monovalent ions, and to some extent share ligand and coordination geo...

Full description

Saved in:
Bibliographic Details
Published in:Inorganics 2023-09, Vol.11 (10)
Main Authors: Karner, Victoria, Jancso, Attila, Hemmingsen, Lars
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 10
container_start_page
container_title Inorganics
container_volume 11
creator Karner, Victoria
Jancso, Attila
Hemmingsen, Lars
description The two most common oxidation states of copper in biochemistry are Cu(II) and Cu(I), and while Cu(II) lends itself to spectroscopic interrogation, Cu(I) is silent in most techniques. Ag(I) and Cu(I) are both closed-shell d[sup.10] monovalent ions, and to some extent share ligand and coordination geometry preferences. Therefore, Ag(I) may be applied to explore Cu(I) binding sites in biomolecules. Here, we review applications of [sup.111] Ag perturbed angular correlation (PAC) of γ-ray spectroscopy aimed to elucidate the chemistry of Cu(I) in biological systems. Examples span from small blue copper proteins such as plastocyanin and azurin (electron transport) over hemocyanin (oxygen transport) to CueR and BxmR (metal-ion-sensing proteins). Finally, possible future applications are discussed. [sup.111] Ag is a radionuclide which undergoes β-decay to [sup.111] Cd, and it is a γ-γ cascade of the [sup.111] Cd daughter nucleus, which is used in PAC measurements. [sup.111] Ag PAC spectroscopy may provide information on the coordination environment of Ag(I) and on the structural relaxation occurring upon the essentially instantaneous change from Ag(I) to Cd(II).
doi_str_mv 10.3390/inorganics11100375
format article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A772064418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772064418</galeid><sourcerecordid>A772064418</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7720644183</originalsourceid><addsrcrecordid>eNqVjLEOwiAYhBk0sdG-gBMv0PpTaGlHbTSOJrobRGgxFRrAwbe3g3H3brjkS75DaE0gp7SBjbHOd8IaGQghAJSXM5QUFFhWcQYLlIbwgCkNoTWtE1SevLsZ2-HYK7wz7ufjtldPE6J_Y6dx-8LnUcnoXZBufK_QXIshqPS7S5Qf9pf2mHViUFdjtYteyKn36UM6q7SZ-JbzAirGSE3_Fj7cxUSy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probing the Bioinorganic Chemistry of Cu Spectroscopy</title><source>Publicly Available Content Database</source><creator>Karner, Victoria ; Jancso, Attila ; Hemmingsen, Lars</creator><creatorcontrib>Karner, Victoria ; Jancso, Attila ; Hemmingsen, Lars</creatorcontrib><description>The two most common oxidation states of copper in biochemistry are Cu(II) and Cu(I), and while Cu(II) lends itself to spectroscopic interrogation, Cu(I) is silent in most techniques. Ag(I) and Cu(I) are both closed-shell d[sup.10] monovalent ions, and to some extent share ligand and coordination geometry preferences. Therefore, Ag(I) may be applied to explore Cu(I) binding sites in biomolecules. Here, we review applications of [sup.111] Ag perturbed angular correlation (PAC) of γ-ray spectroscopy aimed to elucidate the chemistry of Cu(I) in biological systems. Examples span from small blue copper proteins such as plastocyanin and azurin (electron transport) over hemocyanin (oxygen transport) to CueR and BxmR (metal-ion-sensing proteins). Finally, possible future applications are discussed. [sup.111] Ag is a radionuclide which undergoes β-decay to [sup.111] Cd, and it is a γ-γ cascade of the [sup.111] Cd daughter nucleus, which is used in PAC measurements. [sup.111] Ag PAC spectroscopy may provide information on the coordination environment of Ag(I) and on the structural relaxation occurring upon the essentially instantaneous change from Ag(I) to Cd(II).</description><identifier>ISSN: 2304-6740</identifier><identifier>DOI: 10.3390/inorganics11100375</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Copper ; Properties ; Silver ; Structure</subject><ispartof>Inorganics, 2023-09, Vol.11 (10)</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Karner, Victoria</creatorcontrib><creatorcontrib>Jancso, Attila</creatorcontrib><creatorcontrib>Hemmingsen, Lars</creatorcontrib><title>Probing the Bioinorganic Chemistry of Cu Spectroscopy</title><title>Inorganics</title><description>The two most common oxidation states of copper in biochemistry are Cu(II) and Cu(I), and while Cu(II) lends itself to spectroscopic interrogation, Cu(I) is silent in most techniques. Ag(I) and Cu(I) are both closed-shell d[sup.10] monovalent ions, and to some extent share ligand and coordination geometry preferences. Therefore, Ag(I) may be applied to explore Cu(I) binding sites in biomolecules. Here, we review applications of [sup.111] Ag perturbed angular correlation (PAC) of γ-ray spectroscopy aimed to elucidate the chemistry of Cu(I) in biological systems. Examples span from small blue copper proteins such as plastocyanin and azurin (electron transport) over hemocyanin (oxygen transport) to CueR and BxmR (metal-ion-sensing proteins). Finally, possible future applications are discussed. [sup.111] Ag is a radionuclide which undergoes β-decay to [sup.111] Cd, and it is a γ-γ cascade of the [sup.111] Cd daughter nucleus, which is used in PAC measurements. [sup.111] Ag PAC spectroscopy may provide information on the coordination environment of Ag(I) and on the structural relaxation occurring upon the essentially instantaneous change from Ag(I) to Cd(II).</description><subject>Copper</subject><subject>Properties</subject><subject>Silver</subject><subject>Structure</subject><issn>2304-6740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVjLEOwiAYhBk0sdG-gBMv0PpTaGlHbTSOJrobRGgxFRrAwbe3g3H3brjkS75DaE0gp7SBjbHOd8IaGQghAJSXM5QUFFhWcQYLlIbwgCkNoTWtE1SevLsZ2-HYK7wz7ufjtldPE6J_Y6dx-8LnUcnoXZBufK_QXIshqPS7S5Qf9pf2mHViUFdjtYteyKn36UM6q7SZ-JbzAirGSE3_Fj7cxUSy</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Karner, Victoria</creator><creator>Jancso, Attila</creator><creator>Hemmingsen, Lars</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20230901</creationdate><title>Probing the Bioinorganic Chemistry of Cu Spectroscopy</title><author>Karner, Victoria ; Jancso, Attila ; Hemmingsen, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7720644183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Copper</topic><topic>Properties</topic><topic>Silver</topic><topic>Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karner, Victoria</creatorcontrib><creatorcontrib>Jancso, Attila</creatorcontrib><creatorcontrib>Hemmingsen, Lars</creatorcontrib><jtitle>Inorganics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karner, Victoria</au><au>Jancso, Attila</au><au>Hemmingsen, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Bioinorganic Chemistry of Cu Spectroscopy</atitle><jtitle>Inorganics</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>11</volume><issue>10</issue><issn>2304-6740</issn><abstract>The two most common oxidation states of copper in biochemistry are Cu(II) and Cu(I), and while Cu(II) lends itself to spectroscopic interrogation, Cu(I) is silent in most techniques. Ag(I) and Cu(I) are both closed-shell d[sup.10] monovalent ions, and to some extent share ligand and coordination geometry preferences. Therefore, Ag(I) may be applied to explore Cu(I) binding sites in biomolecules. Here, we review applications of [sup.111] Ag perturbed angular correlation (PAC) of γ-ray spectroscopy aimed to elucidate the chemistry of Cu(I) in biological systems. Examples span from small blue copper proteins such as plastocyanin and azurin (electron transport) over hemocyanin (oxygen transport) to CueR and BxmR (metal-ion-sensing proteins). Finally, possible future applications are discussed. [sup.111] Ag is a radionuclide which undergoes β-decay to [sup.111] Cd, and it is a γ-γ cascade of the [sup.111] Cd daughter nucleus, which is used in PAC measurements. [sup.111] Ag PAC spectroscopy may provide information on the coordination environment of Ag(I) and on the structural relaxation occurring upon the essentially instantaneous change from Ag(I) to Cd(II).</abstract><pub>MDPI AG</pub><doi>10.3390/inorganics11100375</doi></addata></record>
fulltext fulltext
identifier ISSN: 2304-6740
ispartof Inorganics, 2023-09, Vol.11 (10)
issn 2304-6740
language eng
recordid cdi_gale_infotracacademiconefile_A772064418
source Publicly Available Content Database
subjects Copper
Properties
Silver
Structure
title Probing the Bioinorganic Chemistry of Cu Spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Bioinorganic%20Chemistry%20of%20Cu%20Spectroscopy&rft.jtitle=Inorganics&rft.au=Karner,%20Victoria&rft.date=2023-09-01&rft.volume=11&rft.issue=10&rft.issn=2304-6740&rft_id=info:doi/10.3390/inorganics11100375&rft_dat=%3Cgale%3EA772064418%3C/gale%3E%3Cgrp_id%3Ecdi_FETCH-gale_infotracacademiconefile_A7720644183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A772064418&rfr_iscdi=true