Loading…

Comparative Study of Small-RNA and Degradome Sequencing Reveals Role of Novel stu-miR8006 in Regulating Root Development in ISolanum tuberosum/I L

MicroRNAs are a class of endogenous, non-coding, small-RNA molecules with important functions in plant development and stress response processes. Root systems are important because they allow plants to absorb nutrients and water from the soil and are fundamental for anchoring the plant and respondin...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) 2023-11, Vol.13 (12)
Main Authors: Duan, Xiaoqin, Yang, Jiangwei, Zhang, Feiyan, Han, Yuwen, Gong, Yating, Liu, Mei, Zhang, Ning, Si, Huaijun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:MicroRNAs are a class of endogenous, non-coding, small-RNA molecules with important functions in plant development and stress response processes. Root systems are important because they allow plants to absorb nutrients and water from the soil and are fundamental for anchoring the plant and responding to environmental signals. However, the roles of miRNAs underlying root development remain poorly investigated in potato. In this research, small-RNA sequencing was performed to thoroughly detect underlying miRNAs and their roles in regulating root development between the early root (ER) stage and the mature root (MR) stage of potato roots. A total of 203 known and 137 novel miRNAs were obtained, and 64 differentially expressed miRNAs (DEMs) were identified between the ER and MR stages. The expression patterns of 12 DEMs were also determined via qRT-PCR. In addition, a mixed degradome library was constructed from the ER and the MR stages to identify the targets of the identified miRNAs, and 2400 target genes were verified to be the targets of 131 miRNAs. Based on target annotation, we identified that nine target genes of six DEMs were probably involved in potato root development, and eight targets of six DEMs were validated via 5’-RLM-RACE assays. These targets may participate in root development by regulating cell proliferation, root cultures (PGSC0003DMT400013837), root meristem growth (PGSC0003DMT400079970), root morphogenesis (PGSC0003DMT400040282), post-embryonic root development (PGSC0003DMT400021612), root hair elongation (PGSC0003DMT400034518), cell wall repair (PGSC0003DMT400074930), and auxin polar transport (PGSC0003DMT400079970), and by negatively regulating cell proliferation (PGSC0003DMT400009997) and cell growth (PGSC0003DMT400003464). The qRT-PCR analysis indicated that most miRNAs have opposing expression patterns to their targets. It is widely accepted that potato root development is regulated by miRNAs, among which stu-miR8006-p5-1ss9AT is substantially down-regulated during root development. We show here that the suppression of stu-miR8006-p5-1ss9AT led to an alteration in the potato root architecture and that it targeted auxin induction in the root culture protein 12-encoding gene that is potentially involved in the regulation of root development. In addition, the suppression of stu-miR8006-p5-1ss9AT led to a significant alteration in the potato root architecture. Altogether, our results might provide some useful insights into stu-miR8006-p
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy13122942