Loading…
Cu/ZrO[sub.2] Catalyst Modified with Y[sub.2]O[sub.3] for Effective and Stable Dehydration of Glycerol to Acetol
Glycerol is a main by-product of biodiesel production, and its further processing is essential for the biorefinery. In this paper, a highly active and stable catalyst for the catalytic dehydration of glycerol to acetol is obtained by modifying a Cu-Zr (ZrO[sub.2] supported Cu) catalyst with Y[sub.2]...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2024-01, Vol.29 (2) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glycerol is a main by-product of biodiesel production, and its further processing is essential for the biorefinery. In this paper, a highly active and stable catalyst for the catalytic dehydration of glycerol to acetol is obtained by modifying a Cu-Zr (ZrO[sub.2] supported Cu) catalyst with Y[sub.2]O[sub.3] using a co-precipitation method. It is found that the addition of Y[sub.2]O[sub.3] effectively enhances the catalytic performance of Cu-Zr. Cu-Zr reaches the highest selectivity (82.4%) to acetol at 24 h. However, the selectivity decreases to 70.1% at 36 h. The conversion also decreases from 99.2 to 91.1%. Cu-Zr-Y exhibits very high activity and very good stability. During a 250 h reaction, no deactivation is observed, and the conversion and selectivity remains ~100% and ~85%, respectively. The catalysts are characterized by XRD, TEM, H[sub.2]-TPR, and NH[sub.3]-TPD. The results reveal that Y[sub.2]O[sub.3] not only improves the dispersion of Cu and the acidity of the catalyst but also restrains the agglomeration of Cu particles and assists retaining the main structure of support under reaction conditions. The high dispersion, high acidity content, and stable structure contributes to the excellent catalytic performance of Cu-Zr-Y. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules29020356 |