Loading…
Bear biometrics: developing an individual recognition technique for sloth bears
Identifying individual animals, especially in large mammals, is an important goal for wildlife biologists and managers. Bears, occupying diverse habitats, face and experience significant conflict. Among Asian bears, the sloth bear Melursus ursinus (Shaw, 1791; Vulnerable IUCN Red List) is reported v...
Saved in:
Published in: | Mammalian biology : Zeitschrift für Säugetierkunde 2024-04, Vol.104 (2), p.165-173 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-b40e50c98b7e9407fcd1bebd214109d0b2874c9248b693f6df22c6c438ca05f03 |
container_end_page | 173 |
container_issue | 2 |
container_start_page | 165 |
container_title | Mammalian biology : Zeitschrift für Säugetierkunde |
container_volume | 104 |
creator | Jangid, Ashish Kumar Sha, Arun A. Thakkar, Swayam Chawla, Nishchay M. V., Baijuraj Sharp, Thomas Satyanarayan, Kartick Seshamani, Geeta |
description | Identifying individual animals, especially in large mammals, is an important goal for wildlife biologists and managers. Bears, occupying diverse habitats, face and experience significant conflict. Among Asian bears, the sloth bear
Melursus ursinus
(Shaw, 1791; Vulnerable IUCN Red List) is reported vulnerable due to negative interactions with humans, requiring solutions like identifying bear individuals using morphological features. To do so, we used an image-comparison algorithm to evaluate the uniqueness of chest markings using structural similarity index (SSIM) and trained a deep learning model based on the
EfficientNet
architecture for predicting an individual bear classification. We collected 1567 images (of 144 bears) to examine individual-level differences in chestmark patterns. The comparison yielded 98% accuracy in differentiating chestmarks as a unique pattern for an individual. Subsequently, we trained a circular classification model based on
EfficientNet
framework using augmented 5628 images for training (80%; of 115 bears), which was validated over 95% for top one and 99% for five individual predictions on 1407 testing images (20%; of 115 bears). The final step involved passing 58 non-augmented images (of 29 out-of-train bears), and the top five predictions of closely similar patterns suggested by the model were then manually compared for similarities in shapes, which suggested whether the image belonged to a new individual. The high accuracy of comparison and classification models suggests the potential applicability of this technique for helping maintain the
ex-situ
bear database, identifying the conflict individual and estimating bear populations. |
doi_str_mv | 10.1007/s42991-023-00396-x |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A786606364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786606364</galeid><sourcerecordid>A786606364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-b40e50c98b7e9407fcd1bebd214109d0b2874c9248b693f6df22c6c438ca05f03</originalsourceid><addsrcrecordid>eNp9kM9OAyEQhzdGE2v1BTzxAtSBZdnFW238lzTpRc8EWGhptlBh29S3d-16NnOYyWS-XzJfUdwTmBGA-iEzKgTBQEsMUAqOTxfFhHDSYMJqfnmeOa6A1dfFTc5bAEoqqCbF6smqhLSPO9snb_Ijau3RdnHvwxqpgHxo_dG3B9WhZE1cB9_7GFBvzSb4r4NFLiaUu9hvkB6S8m1x5VSX7d1fnxafL88fize8XL2-L-ZLbGhDeqwZ2AqMaHRtBYPamZZoq1tKGAHRgqZNzYygrNFclI63jlLDDSsbo6ByUE6L2Zi7Vp2VPrjYJ2WGau3Omxis88N-XjecAy85GwA6AibFnJN1cp_8TqVvSUD-OpSjQzk4lGeH8jRA5Qjl4TisbZLbeEhheOw_6gfhC3X4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bear biometrics: developing an individual recognition technique for sloth bears</title><source>Springer Link</source><creator>Jangid, Ashish Kumar ; Sha, Arun A. ; Thakkar, Swayam ; Chawla, Nishchay ; M. V., Baijuraj ; Sharp, Thomas ; Satyanarayan, Kartick ; Seshamani, Geeta</creator><creatorcontrib>Jangid, Ashish Kumar ; Sha, Arun A. ; Thakkar, Swayam ; Chawla, Nishchay ; M. V., Baijuraj ; Sharp, Thomas ; Satyanarayan, Kartick ; Seshamani, Geeta</creatorcontrib><description>Identifying individual animals, especially in large mammals, is an important goal for wildlife biologists and managers. Bears, occupying diverse habitats, face and experience significant conflict. Among Asian bears, the sloth bear
Melursus ursinus
(Shaw, 1791; Vulnerable IUCN Red List) is reported vulnerable due to negative interactions with humans, requiring solutions like identifying bear individuals using morphological features. To do so, we used an image-comparison algorithm to evaluate the uniqueness of chest markings using structural similarity index (SSIM) and trained a deep learning model based on the
EfficientNet
architecture for predicting an individual bear classification. We collected 1567 images (of 144 bears) to examine individual-level differences in chestmark patterns. The comparison yielded 98% accuracy in differentiating chestmarks as a unique pattern for an individual. Subsequently, we trained a circular classification model based on
EfficientNet
framework using augmented 5628 images for training (80%; of 115 bears), which was validated over 95% for top one and 99% for five individual predictions on 1407 testing images (20%; of 115 bears). The final step involved passing 58 non-augmented images (of 29 out-of-train bears), and the top five predictions of closely similar patterns suggested by the model were then manually compared for similarities in shapes, which suggested whether the image belonged to a new individual. The high accuracy of comparison and classification models suggests the potential applicability of this technique for helping maintain the
ex-situ
bear database, identifying the conflict individual and estimating bear populations.</description><identifier>ISSN: 1616-5047</identifier><identifier>EISSN: 1618-1476</identifier><identifier>DOI: 10.1007/s42991-023-00396-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Animal Anatomy ; Animal Ecology ; Animal Systematics/Taxonomy/Biogeography ; Biomedical and Life Sciences ; Biometry ; Evolutionary Biology ; Fish & Wildlife Biology & Management ; Histology ; Life Sciences ; Methods ; Morphology ; Original Article ; Zoology</subject><ispartof>Mammalian biology : Zeitschrift für Säugetierkunde, 2024-04, Vol.104 (2), p.165-173</ispartof><rights>The Author(s) under exclusive licence to Deutsche Gesellschaft für Säugetierkunde 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2024 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-b40e50c98b7e9407fcd1bebd214109d0b2874c9248b693f6df22c6c438ca05f03</cites><orcidid>0000-0002-6225-1900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jangid, Ashish Kumar</creatorcontrib><creatorcontrib>Sha, Arun A.</creatorcontrib><creatorcontrib>Thakkar, Swayam</creatorcontrib><creatorcontrib>Chawla, Nishchay</creatorcontrib><creatorcontrib>M. V., Baijuraj</creatorcontrib><creatorcontrib>Sharp, Thomas</creatorcontrib><creatorcontrib>Satyanarayan, Kartick</creatorcontrib><creatorcontrib>Seshamani, Geeta</creatorcontrib><title>Bear biometrics: developing an individual recognition technique for sloth bears</title><title>Mammalian biology : Zeitschrift für Säugetierkunde</title><addtitle>Mamm Biol</addtitle><description>Identifying individual animals, especially in large mammals, is an important goal for wildlife biologists and managers. Bears, occupying diverse habitats, face and experience significant conflict. Among Asian bears, the sloth bear
Melursus ursinus
(Shaw, 1791; Vulnerable IUCN Red List) is reported vulnerable due to negative interactions with humans, requiring solutions like identifying bear individuals using morphological features. To do so, we used an image-comparison algorithm to evaluate the uniqueness of chest markings using structural similarity index (SSIM) and trained a deep learning model based on the
EfficientNet
architecture for predicting an individual bear classification. We collected 1567 images (of 144 bears) to examine individual-level differences in chestmark patterns. The comparison yielded 98% accuracy in differentiating chestmarks as a unique pattern for an individual. Subsequently, we trained a circular classification model based on
EfficientNet
framework using augmented 5628 images for training (80%; of 115 bears), which was validated over 95% for top one and 99% for five individual predictions on 1407 testing images (20%; of 115 bears). The final step involved passing 58 non-augmented images (of 29 out-of-train bears), and the top five predictions of closely similar patterns suggested by the model were then manually compared for similarities in shapes, which suggested whether the image belonged to a new individual. The high accuracy of comparison and classification models suggests the potential applicability of this technique for helping maintain the
ex-situ
bear database, identifying the conflict individual and estimating bear populations.</description><subject>Algorithms</subject><subject>Animal Anatomy</subject><subject>Animal Ecology</subject><subject>Animal Systematics/Taxonomy/Biogeography</subject><subject>Biomedical and Life Sciences</subject><subject>Biometry</subject><subject>Evolutionary Biology</subject><subject>Fish & Wildlife Biology & Management</subject><subject>Histology</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Morphology</subject><subject>Original Article</subject><subject>Zoology</subject><issn>1616-5047</issn><issn>1618-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OAyEQhzdGE2v1BTzxAtSBZdnFW238lzTpRc8EWGhptlBh29S3d-16NnOYyWS-XzJfUdwTmBGA-iEzKgTBQEsMUAqOTxfFhHDSYMJqfnmeOa6A1dfFTc5bAEoqqCbF6smqhLSPO9snb_Ijau3RdnHvwxqpgHxo_dG3B9WhZE1cB9_7GFBvzSb4r4NFLiaUu9hvkB6S8m1x5VSX7d1fnxafL88fize8XL2-L-ZLbGhDeqwZ2AqMaHRtBYPamZZoq1tKGAHRgqZNzYygrNFclI63jlLDDSsbo6ByUE6L2Zi7Vp2VPrjYJ2WGau3Omxis88N-XjecAy85GwA6AibFnJN1cp_8TqVvSUD-OpSjQzk4lGeH8jRA5Qjl4TisbZLbeEhheOw_6gfhC3X4</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Jangid, Ashish Kumar</creator><creator>Sha, Arun A.</creator><creator>Thakkar, Swayam</creator><creator>Chawla, Nishchay</creator><creator>M. V., Baijuraj</creator><creator>Sharp, Thomas</creator><creator>Satyanarayan, Kartick</creator><creator>Seshamani, Geeta</creator><general>Springer International Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6225-1900</orcidid></search><sort><creationdate>20240401</creationdate><title>Bear biometrics: developing an individual recognition technique for sloth bears</title><author>Jangid, Ashish Kumar ; Sha, Arun A. ; Thakkar, Swayam ; Chawla, Nishchay ; M. V., Baijuraj ; Sharp, Thomas ; Satyanarayan, Kartick ; Seshamani, Geeta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-b40e50c98b7e9407fcd1bebd214109d0b2874c9248b693f6df22c6c438ca05f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Animal Anatomy</topic><topic>Animal Ecology</topic><topic>Animal Systematics/Taxonomy/Biogeography</topic><topic>Biomedical and Life Sciences</topic><topic>Biometry</topic><topic>Evolutionary Biology</topic><topic>Fish & Wildlife Biology & Management</topic><topic>Histology</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Morphology</topic><topic>Original Article</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jangid, Ashish Kumar</creatorcontrib><creatorcontrib>Sha, Arun A.</creatorcontrib><creatorcontrib>Thakkar, Swayam</creatorcontrib><creatorcontrib>Chawla, Nishchay</creatorcontrib><creatorcontrib>M. V., Baijuraj</creatorcontrib><creatorcontrib>Sharp, Thomas</creatorcontrib><creatorcontrib>Satyanarayan, Kartick</creatorcontrib><creatorcontrib>Seshamani, Geeta</creatorcontrib><collection>CrossRef</collection><jtitle>Mammalian biology : Zeitschrift für Säugetierkunde</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jangid, Ashish Kumar</au><au>Sha, Arun A.</au><au>Thakkar, Swayam</au><au>Chawla, Nishchay</au><au>M. V., Baijuraj</au><au>Sharp, Thomas</au><au>Satyanarayan, Kartick</au><au>Seshamani, Geeta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bear biometrics: developing an individual recognition technique for sloth bears</atitle><jtitle>Mammalian biology : Zeitschrift für Säugetierkunde</jtitle><stitle>Mamm Biol</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>104</volume><issue>2</issue><spage>165</spage><epage>173</epage><pages>165-173</pages><issn>1616-5047</issn><eissn>1618-1476</eissn><abstract>Identifying individual animals, especially in large mammals, is an important goal for wildlife biologists and managers. Bears, occupying diverse habitats, face and experience significant conflict. Among Asian bears, the sloth bear
Melursus ursinus
(Shaw, 1791; Vulnerable IUCN Red List) is reported vulnerable due to negative interactions with humans, requiring solutions like identifying bear individuals using morphological features. To do so, we used an image-comparison algorithm to evaluate the uniqueness of chest markings using structural similarity index (SSIM) and trained a deep learning model based on the
EfficientNet
architecture for predicting an individual bear classification. We collected 1567 images (of 144 bears) to examine individual-level differences in chestmark patterns. The comparison yielded 98% accuracy in differentiating chestmarks as a unique pattern for an individual. Subsequently, we trained a circular classification model based on
EfficientNet
framework using augmented 5628 images for training (80%; of 115 bears), which was validated over 95% for top one and 99% for five individual predictions on 1407 testing images (20%; of 115 bears). The final step involved passing 58 non-augmented images (of 29 out-of-train bears), and the top five predictions of closely similar patterns suggested by the model were then manually compared for similarities in shapes, which suggested whether the image belonged to a new individual. The high accuracy of comparison and classification models suggests the potential applicability of this technique for helping maintain the
ex-situ
bear database, identifying the conflict individual and estimating bear populations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42991-023-00396-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6225-1900</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5047 |
ispartof | Mammalian biology : Zeitschrift für Säugetierkunde, 2024-04, Vol.104 (2), p.165-173 |
issn | 1616-5047 1618-1476 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A786606364 |
source | Springer Link |
subjects | Algorithms Animal Anatomy Animal Ecology Animal Systematics/Taxonomy/Biogeography Biomedical and Life Sciences Biometry Evolutionary Biology Fish & Wildlife Biology & Management Histology Life Sciences Methods Morphology Original Article Zoology |
title | Bear biometrics: developing an individual recognition technique for sloth bears |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bear%20biometrics:%20developing%20an%20individual%20recognition%20technique%20for%20sloth%20bears&rft.jtitle=Mammalian%20biology%20:%20Zeitschrift%20f%C3%BCr%20S%C3%A4ugetierkunde&rft.au=Jangid,%20Ashish%20Kumar&rft.date=2024-04-01&rft.volume=104&rft.issue=2&rft.spage=165&rft.epage=173&rft.pages=165-173&rft.issn=1616-5047&rft.eissn=1618-1476&rft_id=info:doi/10.1007/s42991-023-00396-x&rft_dat=%3Cgale_cross%3EA786606364%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-b40e50c98b7e9407fcd1bebd214109d0b2874c9248b693f6df22c6c438ca05f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A786606364&rfr_iscdi=true |