Loading…

Bear biometrics: developing an individual recognition technique for sloth bears

Identifying individual animals, especially in large mammals, is an important goal for wildlife biologists and managers. Bears, occupying diverse habitats, face and experience significant conflict. Among Asian bears, the sloth bear Melursus ursinus (Shaw, 1791; Vulnerable IUCN Red List) is reported v...

Full description

Saved in:
Bibliographic Details
Published in:Mammalian biology : Zeitschrift für Säugetierkunde 2024-04, Vol.104 (2), p.165-173
Main Authors: Jangid, Ashish Kumar, Sha, Arun A., Thakkar, Swayam, Chawla, Nishchay, M. V., Baijuraj, Sharp, Thomas, Satyanarayan, Kartick, Seshamani, Geeta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c281t-b40e50c98b7e9407fcd1bebd214109d0b2874c9248b693f6df22c6c438ca05f03
container_end_page 173
container_issue 2
container_start_page 165
container_title Mammalian biology : Zeitschrift für Säugetierkunde
container_volume 104
creator Jangid, Ashish Kumar
Sha, Arun A.
Thakkar, Swayam
Chawla, Nishchay
M. V., Baijuraj
Sharp, Thomas
Satyanarayan, Kartick
Seshamani, Geeta
description Identifying individual animals, especially in large mammals, is an important goal for wildlife biologists and managers. Bears, occupying diverse habitats, face and experience significant conflict. Among Asian bears, the sloth bear Melursus ursinus (Shaw, 1791; Vulnerable IUCN Red List) is reported vulnerable due to negative interactions with humans, requiring solutions like identifying bear individuals using morphological features. To do so, we used an image-comparison algorithm to evaluate the uniqueness of chest markings using structural similarity index (SSIM) and trained a deep learning model based on the EfficientNet architecture for predicting an individual bear classification. We collected 1567 images (of 144 bears) to examine individual-level differences in chestmark patterns. The comparison yielded 98% accuracy in differentiating chestmarks as a unique pattern for an individual. Subsequently, we trained a circular classification model based on EfficientNet framework using augmented 5628 images for training (80%; of 115 bears), which was validated over 95% for top one and 99% for five individual predictions on 1407 testing images (20%; of 115 bears). The final step involved passing 58 non-augmented images (of 29 out-of-train bears), and the top five predictions of closely similar patterns suggested by the model were then manually compared for similarities in shapes, which suggested whether the image belonged to a new individual. The high accuracy of comparison and classification models suggests the potential applicability of this technique for helping maintain the ex-situ bear database, identifying the conflict individual and estimating bear populations.
doi_str_mv 10.1007/s42991-023-00396-x
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A786606364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786606364</galeid><sourcerecordid>A786606364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-b40e50c98b7e9407fcd1bebd214109d0b2874c9248b693f6df22c6c438ca05f03</originalsourceid><addsrcrecordid>eNp9kM9OAyEQhzdGE2v1BTzxAtSBZdnFW238lzTpRc8EWGhptlBh29S3d-16NnOYyWS-XzJfUdwTmBGA-iEzKgTBQEsMUAqOTxfFhHDSYMJqfnmeOa6A1dfFTc5bAEoqqCbF6smqhLSPO9snb_Ijau3RdnHvwxqpgHxo_dG3B9WhZE1cB9_7GFBvzSb4r4NFLiaUu9hvkB6S8m1x5VSX7d1fnxafL88fize8XL2-L-ZLbGhDeqwZ2AqMaHRtBYPamZZoq1tKGAHRgqZNzYygrNFclI63jlLDDSsbo6ByUE6L2Zi7Vp2VPrjYJ2WGau3Omxis88N-XjecAy85GwA6AibFnJN1cp_8TqVvSUD-OpSjQzk4lGeH8jRA5Qjl4TisbZLbeEhheOw_6gfhC3X4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bear biometrics: developing an individual recognition technique for sloth bears</title><source>Springer Link</source><creator>Jangid, Ashish Kumar ; Sha, Arun A. ; Thakkar, Swayam ; Chawla, Nishchay ; M. V., Baijuraj ; Sharp, Thomas ; Satyanarayan, Kartick ; Seshamani, Geeta</creator><creatorcontrib>Jangid, Ashish Kumar ; Sha, Arun A. ; Thakkar, Swayam ; Chawla, Nishchay ; M. V., Baijuraj ; Sharp, Thomas ; Satyanarayan, Kartick ; Seshamani, Geeta</creatorcontrib><description>Identifying individual animals, especially in large mammals, is an important goal for wildlife biologists and managers. Bears, occupying diverse habitats, face and experience significant conflict. Among Asian bears, the sloth bear Melursus ursinus (Shaw, 1791; Vulnerable IUCN Red List) is reported vulnerable due to negative interactions with humans, requiring solutions like identifying bear individuals using morphological features. To do so, we used an image-comparison algorithm to evaluate the uniqueness of chest markings using structural similarity index (SSIM) and trained a deep learning model based on the EfficientNet architecture for predicting an individual bear classification. We collected 1567 images (of 144 bears) to examine individual-level differences in chestmark patterns. The comparison yielded 98% accuracy in differentiating chestmarks as a unique pattern for an individual. Subsequently, we trained a circular classification model based on EfficientNet framework using augmented 5628 images for training (80%; of 115 bears), which was validated over 95% for top one and 99% for five individual predictions on 1407 testing images (20%; of 115 bears). The final step involved passing 58 non-augmented images (of 29 out-of-train bears), and the top five predictions of closely similar patterns suggested by the model were then manually compared for similarities in shapes, which suggested whether the image belonged to a new individual. The high accuracy of comparison and classification models suggests the potential applicability of this technique for helping maintain the ex-situ bear database, identifying the conflict individual and estimating bear populations.</description><identifier>ISSN: 1616-5047</identifier><identifier>EISSN: 1618-1476</identifier><identifier>DOI: 10.1007/s42991-023-00396-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Animal Anatomy ; Animal Ecology ; Animal Systematics/Taxonomy/Biogeography ; Biomedical and Life Sciences ; Biometry ; Evolutionary Biology ; Fish &amp; Wildlife Biology &amp; Management ; Histology ; Life Sciences ; Methods ; Morphology ; Original Article ; Zoology</subject><ispartof>Mammalian biology : Zeitschrift für Säugetierkunde, 2024-04, Vol.104 (2), p.165-173</ispartof><rights>The Author(s) under exclusive licence to Deutsche Gesellschaft für Säugetierkunde 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2024 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-b40e50c98b7e9407fcd1bebd214109d0b2874c9248b693f6df22c6c438ca05f03</cites><orcidid>0000-0002-6225-1900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jangid, Ashish Kumar</creatorcontrib><creatorcontrib>Sha, Arun A.</creatorcontrib><creatorcontrib>Thakkar, Swayam</creatorcontrib><creatorcontrib>Chawla, Nishchay</creatorcontrib><creatorcontrib>M. V., Baijuraj</creatorcontrib><creatorcontrib>Sharp, Thomas</creatorcontrib><creatorcontrib>Satyanarayan, Kartick</creatorcontrib><creatorcontrib>Seshamani, Geeta</creatorcontrib><title>Bear biometrics: developing an individual recognition technique for sloth bears</title><title>Mammalian biology : Zeitschrift für Säugetierkunde</title><addtitle>Mamm Biol</addtitle><description>Identifying individual animals, especially in large mammals, is an important goal for wildlife biologists and managers. Bears, occupying diverse habitats, face and experience significant conflict. Among Asian bears, the sloth bear Melursus ursinus (Shaw, 1791; Vulnerable IUCN Red List) is reported vulnerable due to negative interactions with humans, requiring solutions like identifying bear individuals using morphological features. To do so, we used an image-comparison algorithm to evaluate the uniqueness of chest markings using structural similarity index (SSIM) and trained a deep learning model based on the EfficientNet architecture for predicting an individual bear classification. We collected 1567 images (of 144 bears) to examine individual-level differences in chestmark patterns. The comparison yielded 98% accuracy in differentiating chestmarks as a unique pattern for an individual. Subsequently, we trained a circular classification model based on EfficientNet framework using augmented 5628 images for training (80%; of 115 bears), which was validated over 95% for top one and 99% for five individual predictions on 1407 testing images (20%; of 115 bears). The final step involved passing 58 non-augmented images (of 29 out-of-train bears), and the top five predictions of closely similar patterns suggested by the model were then manually compared for similarities in shapes, which suggested whether the image belonged to a new individual. The high accuracy of comparison and classification models suggests the potential applicability of this technique for helping maintain the ex-situ bear database, identifying the conflict individual and estimating bear populations.</description><subject>Algorithms</subject><subject>Animal Anatomy</subject><subject>Animal Ecology</subject><subject>Animal Systematics/Taxonomy/Biogeography</subject><subject>Biomedical and Life Sciences</subject><subject>Biometry</subject><subject>Evolutionary Biology</subject><subject>Fish &amp; Wildlife Biology &amp; Management</subject><subject>Histology</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Morphology</subject><subject>Original Article</subject><subject>Zoology</subject><issn>1616-5047</issn><issn>1618-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OAyEQhzdGE2v1BTzxAtSBZdnFW238lzTpRc8EWGhptlBh29S3d-16NnOYyWS-XzJfUdwTmBGA-iEzKgTBQEsMUAqOTxfFhHDSYMJqfnmeOa6A1dfFTc5bAEoqqCbF6smqhLSPO9snb_Ijau3RdnHvwxqpgHxo_dG3B9WhZE1cB9_7GFBvzSb4r4NFLiaUu9hvkB6S8m1x5VSX7d1fnxafL88fize8XL2-L-ZLbGhDeqwZ2AqMaHRtBYPamZZoq1tKGAHRgqZNzYygrNFclI63jlLDDSsbo6ByUE6L2Zi7Vp2VPrjYJ2WGau3Omxis88N-XjecAy85GwA6AibFnJN1cp_8TqVvSUD-OpSjQzk4lGeH8jRA5Qjl4TisbZLbeEhheOw_6gfhC3X4</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Jangid, Ashish Kumar</creator><creator>Sha, Arun A.</creator><creator>Thakkar, Swayam</creator><creator>Chawla, Nishchay</creator><creator>M. V., Baijuraj</creator><creator>Sharp, Thomas</creator><creator>Satyanarayan, Kartick</creator><creator>Seshamani, Geeta</creator><general>Springer International Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6225-1900</orcidid></search><sort><creationdate>20240401</creationdate><title>Bear biometrics: developing an individual recognition technique for sloth bears</title><author>Jangid, Ashish Kumar ; Sha, Arun A. ; Thakkar, Swayam ; Chawla, Nishchay ; M. V., Baijuraj ; Sharp, Thomas ; Satyanarayan, Kartick ; Seshamani, Geeta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-b40e50c98b7e9407fcd1bebd214109d0b2874c9248b693f6df22c6c438ca05f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Animal Anatomy</topic><topic>Animal Ecology</topic><topic>Animal Systematics/Taxonomy/Biogeography</topic><topic>Biomedical and Life Sciences</topic><topic>Biometry</topic><topic>Evolutionary Biology</topic><topic>Fish &amp; Wildlife Biology &amp; Management</topic><topic>Histology</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Morphology</topic><topic>Original Article</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jangid, Ashish Kumar</creatorcontrib><creatorcontrib>Sha, Arun A.</creatorcontrib><creatorcontrib>Thakkar, Swayam</creatorcontrib><creatorcontrib>Chawla, Nishchay</creatorcontrib><creatorcontrib>M. V., Baijuraj</creatorcontrib><creatorcontrib>Sharp, Thomas</creatorcontrib><creatorcontrib>Satyanarayan, Kartick</creatorcontrib><creatorcontrib>Seshamani, Geeta</creatorcontrib><collection>CrossRef</collection><jtitle>Mammalian biology : Zeitschrift für Säugetierkunde</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jangid, Ashish Kumar</au><au>Sha, Arun A.</au><au>Thakkar, Swayam</au><au>Chawla, Nishchay</au><au>M. V., Baijuraj</au><au>Sharp, Thomas</au><au>Satyanarayan, Kartick</au><au>Seshamani, Geeta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bear biometrics: developing an individual recognition technique for sloth bears</atitle><jtitle>Mammalian biology : Zeitschrift für Säugetierkunde</jtitle><stitle>Mamm Biol</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>104</volume><issue>2</issue><spage>165</spage><epage>173</epage><pages>165-173</pages><issn>1616-5047</issn><eissn>1618-1476</eissn><abstract>Identifying individual animals, especially in large mammals, is an important goal for wildlife biologists and managers. Bears, occupying diverse habitats, face and experience significant conflict. Among Asian bears, the sloth bear Melursus ursinus (Shaw, 1791; Vulnerable IUCN Red List) is reported vulnerable due to negative interactions with humans, requiring solutions like identifying bear individuals using morphological features. To do so, we used an image-comparison algorithm to evaluate the uniqueness of chest markings using structural similarity index (SSIM) and trained a deep learning model based on the EfficientNet architecture for predicting an individual bear classification. We collected 1567 images (of 144 bears) to examine individual-level differences in chestmark patterns. The comparison yielded 98% accuracy in differentiating chestmarks as a unique pattern for an individual. Subsequently, we trained a circular classification model based on EfficientNet framework using augmented 5628 images for training (80%; of 115 bears), which was validated over 95% for top one and 99% for five individual predictions on 1407 testing images (20%; of 115 bears). The final step involved passing 58 non-augmented images (of 29 out-of-train bears), and the top five predictions of closely similar patterns suggested by the model were then manually compared for similarities in shapes, which suggested whether the image belonged to a new individual. The high accuracy of comparison and classification models suggests the potential applicability of this technique for helping maintain the ex-situ bear database, identifying the conflict individual and estimating bear populations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42991-023-00396-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6225-1900</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-5047
ispartof Mammalian biology : Zeitschrift für Säugetierkunde, 2024-04, Vol.104 (2), p.165-173
issn 1616-5047
1618-1476
language eng
recordid cdi_gale_infotracacademiconefile_A786606364
source Springer Link
subjects Algorithms
Animal Anatomy
Animal Ecology
Animal Systematics/Taxonomy/Biogeography
Biomedical and Life Sciences
Biometry
Evolutionary Biology
Fish & Wildlife Biology & Management
Histology
Life Sciences
Methods
Morphology
Original Article
Zoology
title Bear biometrics: developing an individual recognition technique for sloth bears
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bear%20biometrics:%20developing%20an%20individual%20recognition%20technique%20for%20sloth%20bears&rft.jtitle=Mammalian%20biology%20:%20Zeitschrift%20f%C3%BCr%20S%C3%A4ugetierkunde&rft.au=Jangid,%20Ashish%20Kumar&rft.date=2024-04-01&rft.volume=104&rft.issue=2&rft.spage=165&rft.epage=173&rft.pages=165-173&rft.issn=1616-5047&rft.eissn=1618-1476&rft_id=info:doi/10.1007/s42991-023-00396-x&rft_dat=%3Cgale_cross%3EA786606364%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-b40e50c98b7e9407fcd1bebd214109d0b2874c9248b693f6df22c6c438ca05f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A786606364&rfr_iscdi=true