Loading…
Intestinal Microbial Ecology and Fillet Metal Chemistry of Wild Grey Mullets Reflect the Variability of the Aquatic Environment in a Western Mediterranean Coastal Lagoon (Santa Giusta, Sardinia, Italy)
Fish populations play an active role in the maintenance of aquatic ecosystems biodiversity. Their intestinal microbiota and fillet chemistry depend on abiotic and biotic factors of the water environments that they inhabit. The present study investigated the grey mullets’ gut microbiota from a transi...
Saved in:
Published in: | Water (Basel) 2021-03, Vol.13 (6), p.879 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fish populations play an active role in the maintenance of aquatic ecosystems biodiversity. Their intestinal microbiota and fillet chemistry depend on abiotic and biotic factors of the water environments that they inhabit. The present study investigated the grey mullets’ gut microbiota from a transitional aquatic ecosystem (Santa Giusta Lagoon, Sardinia, Italy) by a multidisciplinary approach which refers the results of (1) gut cultivable microbiota analyses (MA), (2) the trace metal assessment of fish muscle (TM), (3) the physico-chemical water monitoring (PC). MA detected the greatest number of total aerobic heterotrophic bacteria, Enterobacteriaceae and coliforms in Autumn (mean values 1.3 × 105, 2.4 × 104, 1.1 × 104 cfu g−1, respectively) when the accumulated rain and mean values of nutrients (reactive phosphorous and silica) were the highest. Marine bacteria were more numerous in Summer (mean value 7.4 × 105 cfu g−1) when the highest mean values of water temperature and salinity were registered. The gut bacteria were identified as Pseudomonas spp. (64%), Aeromonas spp. (17%), Ochrobactrum pseudogrignonense (10%), Providencia spp. (5%), Enterobacter ludwigii (2%) and Kocuria tytonicola (2%). TM showed that Ca, Na, B and Ni increased their concentrations in Winter while maxima of P, Zn, Cu and Fe were found in muscles of fish sampled in Summer. This study highlighted that the fish intestinal microbiota and metal composition of the fillet reflected the seasonal aquatic environmental variability. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w13060879 |