Loading…

rGO/MWCNT-COOH-Modified Electrodes for the Detection of Trace Cd in Coastal Seawater

Cadmium (Cd) and zinc (Zn) in seawater enter the human body through the food chain. Combined toxicity tests indicated that high concentrations of Cd(II) and low concentrations of Zn(II) had a synergistic effect on humans. Thus, there is an urgent need to prepare a sensor for rapid and simultaneous d...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2024-07, Vol.16 (14)
Main Authors: Gu, Yang, Qiu, Chengjun, Qu, Wei, Tao, Wei, Zhao, Zizi, Hao, Huili
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cadmium (Cd) and zinc (Zn) in seawater enter the human body through the food chain. Combined toxicity tests indicated that high concentrations of Cd(II) and low concentrations of Zn(II) had a synergistic effect on humans. Thus, there is an urgent need to prepare a sensor for rapid and simultaneous detection of Cd(II) and Zn(II) in seawater. Herein, a reduced graphene oxide/carboxylated multi-walled carbon nanotube (rGO/MWCNT-COOH)-modified glassy carbon electrode was prepared in the experiments using the dropping method. The synthesis of various materials achieved the purpose of expanding the surface area, and scanning electron microscopy was used to observe the structure of the composite membrane. Moreover, the large number of functional groups on the surface of the composite membrane can also increase the adsorption of ions. For the determination of trace cadmium (II) and zinc (II) in seawater, the method used was differential pulse voltammetry (DPV). The results show that the peak current, which was obtained in the range of 5–400 μg/L for Cd(II) and Zn(II), has a linear relationship with concentration, corresponding to the detection limits of 0.8 μg/L for Cd(II) and 0.98 μg/L for Zn(II). The modified electrode was used to determine the Cd(II) and Zn(II) content in the coastal seawater of the Maowei Sea, and the recovery rate was between 95.8 and 98.2% for Cd(II) and 96.7~99.4% for Zn(II), which provided a novel approach of detection to define trace Cd(II) and Zn(II) in seawater.
ISSN:2073-4441
2073-4441
DOI:10.3390/w16142026