Loading…
Oblique Wave Attack on Rubble Mound Breakwater Crest Walls of Finite Length
Rubble mound breakwaters usually present a crest wall to increase the crest freeboards without a large increase of the consumption of material. Methods in the literature to design crest walls are based on estimates of the wave loads. These methods are focused on the maximum loading that attacks a si...
Saved in:
Published in: | Water (Basel) 2020-02, Vol.12 (2), p.353 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rubble mound breakwaters usually present a crest wall to increase the crest freeboards without a large increase of the consumption of material. Methods in the literature to design crest walls are based on estimates of the wave loads. These methods are focused on the maximum loading that attacks a single position of the crest wall. In practice, crest walls have a finite length. Since the maximum loading does not occur at the same instant over the entire length of the crest wall for oblique waves, these methods overestimate the loading in the situation of oblique waves. Wave loads under oblique wave attack have been measured in physical model tests. A method to account for the effect of the finite length of crest walls has been developed, and design guidelines have been derived. The results of this study in combination with the existing methods in the literature to estimate the wave forces enable a more advanced design of crest walls. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w12020353 |