Loading…

Impedance Spectroscopy of Lanthanum-Doped O[sub.3] Ceramics

This study examines the effects of La[sup.3+] doping on (Pb[sub.0.75]Ba[sub.0.25])(Zr[sub.0.70]Ti[sub.0.30])O[sub.3](PBZT) ceramics, which were synthesized using the conventional solid-state reaction method. X-ray diffraction analysis confirmed that the PBZT structure, including PBZT doped with La[s...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2024-11, Vol.14 (21)
Main Authors: Adamczyk-Habrajska, Małgorzata, Makowska, Jolanta, Pikula, Tomasz, Wodecka-Duś, Beata, Bartkowska, Joanna A, Panek, Rafał, Osińska, Katarzyna
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study examines the effects of La[sup.3+] doping on (Pb[sub.0.75]Ba[sub.0.25])(Zr[sub.0.70]Ti[sub.0.30])O[sub.3](PBZT) ceramics, which were synthesized using the conventional solid-state reaction method. X-ray diffraction analysis confirmed that the PBZT structure, including PBZT doped with La[sup.3+] at concentrations x = 1 at.% and x = 2 at.%, exhibited a rhombohedral (R3c) space group, while higher doping levels of x = 3 at.% and x = 4 at.% led to a dominant cubic (Pm-3m) phase with approximately 30% of a remnant rhombohedral component. Scanning electron microscopy (SEM, JEOL JSM-7100F TTL LV, Jeol Ltd., Tokyo, Japan) and energy dispersive X-ray spectroscopy (EDS) were utilized to investigate the structure and morphology of these ceramics. The findings indicated that the chemical composition of the ceramic samples closely corresponded to the initial stoichiometry of the ceramic powder. An increase in the amount of lanthanum results in a decrease in the average grain size of the ceramics. The electrical properties were further evaluated using complex impedance spectroscopy (IS) over a range of temperatures and frequencies, as well as temperature dependence of DC conductivity. The similarity in the changes in activation energy for DC conductivity and grain boundary conductivity, caused by lanthanum ion modification, allows for the conclusion that grain boundaries are the primary microstructural element responsible for conductivity in these materials.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14219854