Loading…

Modelling Gas Holdup in Flotation Column Froths

A one‐dimensional steady‐state model is developed for the prediction of axial variation of the gas holdup in flotation column froths. Froth is considered as an inverse fluidized bed of bubbles and hence the frictional pressure gradient is obtained based on the energy balance. Pressure gradient can a...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of chemical engineering 2007-06, Vol.85 (3), p.369-373
Main Authors: Bhole, Manish R., Joshi, Jyeshtharaj B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4612-ff3ac1e3dc1a57530369a1c5fb845c8fd151b247a8adf8197dc19e2217273e33
cites cdi_FETCH-LOGICAL-c4612-ff3ac1e3dc1a57530369a1c5fb845c8fd151b247a8adf8197dc19e2217273e33
container_end_page 373
container_issue 3
container_start_page 369
container_title Canadian journal of chemical engineering
container_volume 85
creator Bhole, Manish R.
Joshi, Jyeshtharaj B.
description A one‐dimensional steady‐state model is developed for the prediction of axial variation of the gas holdup in flotation column froths. Froth is considered as an inverse fluidized bed of bubbles and hence the frictional pressure gradient is obtained based on the energy balance. Pressure gradient can also be obtained from the Ergun equation with adjustable constants. The model correctly captures the effect of superficial gas velocity, superficial liquid velocity and bubble diameter on the variation of the gas holdup along the froth height. The predictions of the model are in agreement with the experimental data from the literature. On a établi un modèle en régime permanent unidimensionnel pour la prédiction de la variation axiale de la rétention de gaz dans l'écume de colonnes de flottation. L'écume est considérée comme un lit fluidisé de bulles inverse, et de ce fait le gradient de pression frictionnelle est obtenu d'après un bilan énergétique. Le gradient de pression peut également être obtenu à partir de l'équation d'Ergun avec des constantes ajustables. Ce modèle capture correctement l'effet de la vitesse de gaz superficielle, la vitesse de liquide superficielle et le diamètre des bulles sur la variation de la rétention de gaz sur toute la hauteur de la mousse. Les prédictions du modèle montrent un bon accord avec les données expérimentales de la littérature scientifique.
doi_str_mv 10.1002/cjce.5450850312
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotraccpiq_192099552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A192099552</galeid><sourcerecordid>A192099552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4612-ff3ac1e3dc1a57530369a1c5fb845c8fd151b247a8adf8197dc19e2217273e33</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4MoOKdnr0Pw4KEzL2naBk9S5lTcFBT1FmKazGjXzKZD9238LH4yMyrqQJAckjx-v_cef4R2AfcBY3KonpTus5jhjGEKZA11gFMeYeD366iDMc6iGNN4E215_xS-BMfQQWTkCl2Wtpr0htL3Tl1ZzGc9W328n5SukY114Zm7cj5dlmrXPPpttGFk6fXO191FNyeDm_w0urgcnuXHF5GKEyCRMVQq0LRQIFnKKKYJl6CYechipjJTAIMHEqcyk4XJgKcB5JoQSElKNaVdtNe2nchSC1sZ19RSqZl9EcAJ5pwxEqD-H1A4hZ5a5SptbKgf_xYOVoTANPqtmci59-LserzKHrasqp33tTZiVtuprBcCsFhmLpaZi5_Mg7HfGjPplSxNLStl_Y-WcZIlGAJ31HKvYb3Ff21Ffp4PVqZErW192P3blvWzSFKaMnE3HopRPiJXye1YpPQTpUmhMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modelling Gas Holdup in Flotation Column Froths</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bhole, Manish R. ; Joshi, Jyeshtharaj B.</creator><creatorcontrib>Bhole, Manish R. ; Joshi, Jyeshtharaj B.</creatorcontrib><description>A one‐dimensional steady‐state model is developed for the prediction of axial variation of the gas holdup in flotation column froths. Froth is considered as an inverse fluidized bed of bubbles and hence the frictional pressure gradient is obtained based on the energy balance. Pressure gradient can also be obtained from the Ergun equation with adjustable constants. The model correctly captures the effect of superficial gas velocity, superficial liquid velocity and bubble diameter on the variation of the gas holdup along the froth height. The predictions of the model are in agreement with the experimental data from the literature. On a établi un modèle en régime permanent unidimensionnel pour la prédiction de la variation axiale de la rétention de gaz dans l'écume de colonnes de flottation. L'écume est considérée comme un lit fluidisé de bulles inverse, et de ce fait le gradient de pression frictionnelle est obtenu d'après un bilan énergétique. Le gradient de pression peut également être obtenu à partir de l'équation d'Ergun avec des constantes ajustables. Ce modèle capture correctement l'effet de la vitesse de gaz superficielle, la vitesse de liquide superficielle et le diamètre des bulles sur la variation de la rétention de gaz sur toute la hauteur de la mousse. Les prédictions du modèle montrent un bon accord avec les données expérimentales de la littérature scientifique.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.5450850312</identifier><identifier>CODEN: CJCEA7</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Flotation ; flotation column ; Fluidization ; frictional pressure gradient ; froth ; gas holdup ; Hydrodynamics of contact apparatus ; Solid-solid systems</subject><ispartof>Canadian journal of chemical engineering, 2007-06, Vol.85 (3), p.369-373</ispartof><rights>Copyright © 2007 Canadian Society for Chemical Engineering</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2007 Blackwell Publishing Limited, a company of John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4612-ff3ac1e3dc1a57530369a1c5fb845c8fd151b247a8adf8197dc19e2217273e33</citedby><cites>FETCH-LOGICAL-c4612-ff3ac1e3dc1a57530369a1c5fb845c8fd151b247a8adf8197dc19e2217273e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18928601$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhole, Manish R.</creatorcontrib><creatorcontrib>Joshi, Jyeshtharaj B.</creatorcontrib><title>Modelling Gas Holdup in Flotation Column Froths</title><title>Canadian journal of chemical engineering</title><addtitle>Can. J. Chem. Eng</addtitle><description>A one‐dimensional steady‐state model is developed for the prediction of axial variation of the gas holdup in flotation column froths. Froth is considered as an inverse fluidized bed of bubbles and hence the frictional pressure gradient is obtained based on the energy balance. Pressure gradient can also be obtained from the Ergun equation with adjustable constants. The model correctly captures the effect of superficial gas velocity, superficial liquid velocity and bubble diameter on the variation of the gas holdup along the froth height. The predictions of the model are in agreement with the experimental data from the literature. On a établi un modèle en régime permanent unidimensionnel pour la prédiction de la variation axiale de la rétention de gaz dans l'écume de colonnes de flottation. L'écume est considérée comme un lit fluidisé de bulles inverse, et de ce fait le gradient de pression frictionnelle est obtenu d'après un bilan énergétique. Le gradient de pression peut également être obtenu à partir de l'équation d'Ergun avec des constantes ajustables. Ce modèle capture correctement l'effet de la vitesse de gaz superficielle, la vitesse de liquide superficielle et le diamètre des bulles sur la variation de la rétention de gaz sur toute la hauteur de la mousse. Les prédictions du modèle montrent un bon accord avec les données expérimentales de la littérature scientifique.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Flotation</subject><subject>flotation column</subject><subject>Fluidization</subject><subject>frictional pressure gradient</subject><subject>froth</subject><subject>gas holdup</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Solid-solid systems</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAUx4MoOKdnr0Pw4KEzL2naBk9S5lTcFBT1FmKazGjXzKZD9238LH4yMyrqQJAckjx-v_cef4R2AfcBY3KonpTus5jhjGEKZA11gFMeYeD366iDMc6iGNN4E215_xS-BMfQQWTkCl2Wtpr0htL3Tl1ZzGc9W328n5SukY114Zm7cj5dlmrXPPpttGFk6fXO191FNyeDm_w0urgcnuXHF5GKEyCRMVQq0LRQIFnKKKYJl6CYechipjJTAIMHEqcyk4XJgKcB5JoQSElKNaVdtNe2nchSC1sZ19RSqZl9EcAJ5pwxEqD-H1A4hZ5a5SptbKgf_xYOVoTANPqtmci59-LserzKHrasqp33tTZiVtuprBcCsFhmLpaZi5_Mg7HfGjPplSxNLStl_Y-WcZIlGAJ31HKvYb3Ff21Ffp4PVqZErW192P3blvWzSFKaMnE3HopRPiJXye1YpPQTpUmhMw</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Bhole, Manish R.</creator><creator>Joshi, Jyeshtharaj B.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Blackwell Publishing Limited, a company of John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope></search><sort><creationdate>200706</creationdate><title>Modelling Gas Holdup in Flotation Column Froths</title><author>Bhole, Manish R. ; Joshi, Jyeshtharaj B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4612-ff3ac1e3dc1a57530369a1c5fb845c8fd151b247a8adf8197dc19e2217273e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Flotation</topic><topic>flotation column</topic><topic>Fluidization</topic><topic>frictional pressure gradient</topic><topic>froth</topic><topic>gas holdup</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Solid-solid systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhole, Manish R.</creatorcontrib><creatorcontrib>Joshi, Jyeshtharaj B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhole, Manish R.</au><au>Joshi, Jyeshtharaj B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling Gas Holdup in Flotation Column Froths</atitle><jtitle>Canadian journal of chemical engineering</jtitle><addtitle>Can. J. Chem. Eng</addtitle><date>2007-06</date><risdate>2007</risdate><volume>85</volume><issue>3</issue><spage>369</spage><epage>373</epage><pages>369-373</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><coden>CJCEA7</coden><abstract>A one‐dimensional steady‐state model is developed for the prediction of axial variation of the gas holdup in flotation column froths. Froth is considered as an inverse fluidized bed of bubbles and hence the frictional pressure gradient is obtained based on the energy balance. Pressure gradient can also be obtained from the Ergun equation with adjustable constants. The model correctly captures the effect of superficial gas velocity, superficial liquid velocity and bubble diameter on the variation of the gas holdup along the froth height. The predictions of the model are in agreement with the experimental data from the literature. On a établi un modèle en régime permanent unidimensionnel pour la prédiction de la variation axiale de la rétention de gaz dans l'écume de colonnes de flottation. L'écume est considérée comme un lit fluidisé de bulles inverse, et de ce fait le gradient de pression frictionnelle est obtenu d'après un bilan énergétique. Le gradient de pression peut également être obtenu à partir de l'équation d'Ergun avec des constantes ajustables. Ce modèle capture correctement l'effet de la vitesse de gaz superficielle, la vitesse de liquide superficielle et le diamètre des bulles sur la variation de la rétention de gaz sur toute la hauteur de la mousse. Les prédictions du modèle montrent un bon accord avec les données expérimentales de la littérature scientifique.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/cjce.5450850312</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-4034
ispartof Canadian journal of chemical engineering, 2007-06, Vol.85 (3), p.369-373
issn 0008-4034
1939-019X
language eng
recordid cdi_gale_infotraccpiq_192099552
source Wiley-Blackwell Read & Publish Collection
subjects Applied sciences
Chemical engineering
Exact sciences and technology
Flotation
flotation column
Fluidization
frictional pressure gradient
froth
gas holdup
Hydrodynamics of contact apparatus
Solid-solid systems
title Modelling Gas Holdup in Flotation Column Froths
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20Gas%20Holdup%20in%C2%A0Flotation%C2%A0Column%C2%A0Froths&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Bhole,%20Manish%20R.&rft.date=2007-06&rft.volume=85&rft.issue=3&rft.spage=369&rft.epage=373&rft.pages=369-373&rft.issn=0008-4034&rft.eissn=1939-019X&rft.coden=CJCEA7&rft_id=info:doi/10.1002/cjce.5450850312&rft_dat=%3Cgale_cross%3EA192099552%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4612-ff3ac1e3dc1a57530369a1c5fb845c8fd151b247a8adf8197dc19e2217273e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A192099552&rfr_iscdi=true