Loading…

The utilization of specific interactions to enhance the mechanical properties of polysiloxane coatings

Moisture-curable polysiloxanes were modified with ionic groups to enable specific interactions between the polysiloxane matrix and silica nanoparticle reinforcement. A trimethoxysilane-functional quaternary ammonium salt (QAS) was used to modify the polysiloxane matrix. A comparison of the mechanica...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Coatings Technology and Research 2010-03, Vol.7 (2), p.239-252
Main Authors: Majumdar, Partha, Mayo, Bret, Kim, Jongsoo, Gallagher-Lein, Christy, Lee, Elizabeth, Gubbins, Nathan, Chisholm, Bret J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Moisture-curable polysiloxanes were modified with ionic groups to enable specific interactions between the polysiloxane matrix and silica nanoparticle reinforcement. A trimethoxysilane-functional quaternary ammonium salt (QAS) was used to modify the polysiloxane matrix. A comparison of the mechanical properties of coatings containing QAS modification to analogous coatings without QAS modification showed that QAS modification resulted in a dramatic improvement in mechanical properties of silica nanoparticle-reinforced coatings. QAS modification provided major enhancements in both tensile modulus and toughness. The coatings were characterized using positron annihilation spectroscopy, photo-acoustic FT-IR, differential scanning calorimetry, transmission electron microscope, and atomic force microscopy. The characterization results suggested that the QAS moieties present in the polysiloxane matrix undergo specific interactions with the surface of silica nanoparticles enabling an enhancement in interfacial adhesion between the polymer matrix and the nanoparticles. Most likely, the specific interaction that provided the enhanced mechanical properties was an ion–dipole interaction involving silanol groups present on the surface of the silica nanoparticles. The enhanced modulus and toughness of these polysiloxane materials may enable their application as a fouling-release coating for ship hulls, since current polysiloxane-based fouling release coatings suffer from poor mechanical properties and durability.
ISSN:1547-0091
1945-9645
1935-3804
DOI:10.1007/s11998-009-9177-1