Loading…
Random LSC Functions: An Ergodic Theorem
An ergodic theorem for random lsc (lower semicontinuous) functions is obtained by relying on a "scalarization" of such functions. In the process, Kolmogorov's extension theorem for random lsc functions is established. Applications to statistical estimation problems, composite material...
Saved in:
Published in: | Mathematics of operations research 2001-05, Vol.26 (2), p.421-445 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3 |
container_end_page | 445 |
container_issue | 2 |
container_start_page | 421 |
container_title | Mathematics of operations research |
container_volume | 26 |
creator | Korf, Lisa A Wets, Roger J.-B |
description | An ergodic theorem for random lsc (lower semicontinuous) functions is obtained by relying on a "scalarization" of such functions. In the process, Kolmogorov's extension theorem for random lsc functions is established. Applications to statistical estimation problems, composite materials, and stochastic optimization problems are briefly noted. |
doi_str_mv | 10.1287/moor.26.2.421.10548 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A78259070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A78259070</galeid><jstor_id>3690628</jstor_id><sourcerecordid>A78259070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3</originalsourceid><addsrcrecordid>eNqNkctq3DAYhUVIoZPLEzQL002zqB3p19XdDUPSBgYKuUB3QsiSx8PYSiUPSd6-ctxCA1kELQQ63_dL4iD0ieCKgJIXfQixAlFBxYBUBHOmDtCCcBAlZ5IcogWmgpVS8F8f0VFKW4wJl4Qt0PmNGZrQF-vbVXG1H-zYhSF9K5ZDcRnb0HS2uNu4EF1_gj54s0vu9O9-jO6vLu9WP8r1z-_Xq-W6tJyxseTCEuodF7wB6ZUy1hLpG1BUSGU9YUJaKo2vnaCgam9rKWreqJo6xWrc0GP0eZ77EMPvvUuj3oZ9HPKVGggI4AR4hr7OUGt2TneDD2M0tnWDi2YXBue7fLyUCniNJc54-QaeV-P6zr7Fn7_iMzK6p7E1-5T09e3NK5TOqI0hpei8fohdb-KzJlhP3eipGw1Cg87d6JdusnU2W9s05vSfQkWNBUwxzPH01Nind878Mkubrt08dnH-6GT3Ztz8x9M_dbCmdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212625125</pqid></control><display><type>article</type><title>Random LSC Functions: An Ergodic Theorem</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><source>JSTOR Archival Journals</source><creator>Korf, Lisa A ; Wets, Roger J.-B</creator><creatorcontrib>Korf, Lisa A ; Wets, Roger J.-B</creatorcontrib><description>An ergodic theorem for random lsc (lower semicontinuous) functions is obtained by relying on a "scalarization" of such functions. In the process, Kolmogorov's extension theorem for random lsc functions is established. Applications to statistical estimation problems, composite materials, and stochastic optimization problems are briefly noted.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.26.2.421.10548</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Bayesian analysis ; Bayesian decision theory ; composite materials ; Decision theory ; epi-convergence ; ergodic theorem ; Ergodic theory ; Homogenization ; Kolmogorov extension ; Kolmogorov's extension theorem ; Mathematical functions ; Probabilities ; random lower semicontinuous functions ; random samples ; Random variables ; Scalability ; Stationary processes ; Stochastic models ; stochastic optimization ; stochastic programming ; Studies ; Topological spaces ; Topological theorems ; Topology</subject><ispartof>Mathematics of operations research, 2001-05, Vol.26 (2), p.421-445</ispartof><rights>Copyright 2001 Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2001 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences May 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3</citedby><cites>FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3690628$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/212625125?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362,58237,58470</link.rule.ids></links><search><creatorcontrib>Korf, Lisa A</creatorcontrib><creatorcontrib>Wets, Roger J.-B</creatorcontrib><title>Random LSC Functions: An Ergodic Theorem</title><title>Mathematics of operations research</title><description>An ergodic theorem for random lsc (lower semicontinuous) functions is obtained by relying on a "scalarization" of such functions. In the process, Kolmogorov's extension theorem for random lsc functions is established. Applications to statistical estimation problems, composite materials, and stochastic optimization problems are briefly noted.</description><subject>Bayesian analysis</subject><subject>Bayesian decision theory</subject><subject>composite materials</subject><subject>Decision theory</subject><subject>epi-convergence</subject><subject>ergodic theorem</subject><subject>Ergodic theory</subject><subject>Homogenization</subject><subject>Kolmogorov extension</subject><subject>Kolmogorov's extension theorem</subject><subject>Mathematical functions</subject><subject>Probabilities</subject><subject>random lower semicontinuous functions</subject><subject>random samples</subject><subject>Random variables</subject><subject>Scalability</subject><subject>Stationary processes</subject><subject>Stochastic models</subject><subject>stochastic optimization</subject><subject>stochastic programming</subject><subject>Studies</subject><subject>Topological spaces</subject><subject>Topological theorems</subject><subject>Topology</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkctq3DAYhUVIoZPLEzQL002zqB3p19XdDUPSBgYKuUB3QsiSx8PYSiUPSd6-ctxCA1kELQQ63_dL4iD0ieCKgJIXfQixAlFBxYBUBHOmDtCCcBAlZ5IcogWmgpVS8F8f0VFKW4wJl4Qt0PmNGZrQF-vbVXG1H-zYhSF9K5ZDcRnb0HS2uNu4EF1_gj54s0vu9O9-jO6vLu9WP8r1z-_Xq-W6tJyxseTCEuodF7wB6ZUy1hLpG1BUSGU9YUJaKo2vnaCgam9rKWreqJo6xWrc0GP0eZ77EMPvvUuj3oZ9HPKVGggI4AR4hr7OUGt2TneDD2M0tnWDi2YXBue7fLyUCniNJc54-QaeV-P6zr7Fn7_iMzK6p7E1-5T09e3NK5TOqI0hpei8fohdb-KzJlhP3eipGw1Cg87d6JdusnU2W9s05vSfQkWNBUwxzPH01Nind878Mkubrt08dnH-6GT3Ztz8x9M_dbCmdg</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Korf, Lisa A</creator><creator>Wets, Roger J.-B</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20010501</creationdate><title>Random LSC Functions: An Ergodic Theorem</title><author>Korf, Lisa A ; Wets, Roger J.-B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Bayesian analysis</topic><topic>Bayesian decision theory</topic><topic>composite materials</topic><topic>Decision theory</topic><topic>epi-convergence</topic><topic>ergodic theorem</topic><topic>Ergodic theory</topic><topic>Homogenization</topic><topic>Kolmogorov extension</topic><topic>Kolmogorov's extension theorem</topic><topic>Mathematical functions</topic><topic>Probabilities</topic><topic>random lower semicontinuous functions</topic><topic>random samples</topic><topic>Random variables</topic><topic>Scalability</topic><topic>Stationary processes</topic><topic>Stochastic models</topic><topic>stochastic optimization</topic><topic>stochastic programming</topic><topic>Studies</topic><topic>Topological spaces</topic><topic>Topological theorems</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korf, Lisa A</creatorcontrib><creatorcontrib>Wets, Roger J.-B</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korf, Lisa A</au><au>Wets, Roger J.-B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random LSC Functions: An Ergodic Theorem</atitle><jtitle>Mathematics of operations research</jtitle><date>2001-05-01</date><risdate>2001</risdate><volume>26</volume><issue>2</issue><spage>421</spage><epage>445</epage><pages>421-445</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>An ergodic theorem for random lsc (lower semicontinuous) functions is obtained by relying on a "scalarization" of such functions. In the process, Kolmogorov's extension theorem for random lsc functions is established. Applications to statistical estimation problems, composite materials, and stochastic optimization problems are briefly noted.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.26.2.421.10548</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-765X |
ispartof | Mathematics of operations research, 2001-05, Vol.26 (2), p.421-445 |
issn | 0364-765X 1526-5471 |
language | eng |
recordid | cdi_gale_infotracgeneralonefile_A78259070 |
source | EBSCOhost Business Source Ultimate; ABI/INFORM Global; JSTOR Archival Journals |
subjects | Bayesian analysis Bayesian decision theory composite materials Decision theory epi-convergence ergodic theorem Ergodic theory Homogenization Kolmogorov extension Kolmogorov's extension theorem Mathematical functions Probabilities random lower semicontinuous functions random samples Random variables Scalability Stationary processes Stochastic models stochastic optimization stochastic programming Studies Topological spaces Topological theorems Topology |
title | Random LSC Functions: An Ergodic Theorem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20LSC%20Functions:%20An%20Ergodic%20Theorem&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Korf,%20Lisa%20A&rft.date=2001-05-01&rft.volume=26&rft.issue=2&rft.spage=421&rft.epage=445&rft.pages=421-445&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.26.2.421.10548&rft_dat=%3Cgale_proqu%3EA78259070%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=212625125&rft_id=info:pmid/&rft_galeid=A78259070&rft_jstor_id=3690628&rfr_iscdi=true |