Loading…

Random LSC Functions: An Ergodic Theorem

An ergodic theorem for random lsc (lower semicontinuous) functions is obtained by relying on a "scalarization" of such functions. In the process, Kolmogorov's extension theorem for random lsc functions is established. Applications to statistical estimation problems, composite material...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics of operations research 2001-05, Vol.26 (2), p.421-445
Main Authors: Korf, Lisa A, Wets, Roger J.-B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3
cites cdi_FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3
container_end_page 445
container_issue 2
container_start_page 421
container_title Mathematics of operations research
container_volume 26
creator Korf, Lisa A
Wets, Roger J.-B
description An ergodic theorem for random lsc (lower semicontinuous) functions is obtained by relying on a "scalarization" of such functions. In the process, Kolmogorov's extension theorem for random lsc functions is established. Applications to statistical estimation problems, composite materials, and stochastic optimization problems are briefly noted.
doi_str_mv 10.1287/moor.26.2.421.10548
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A78259070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A78259070</galeid><jstor_id>3690628</jstor_id><sourcerecordid>A78259070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3</originalsourceid><addsrcrecordid>eNqNkctq3DAYhUVIoZPLEzQL002zqB3p19XdDUPSBgYKuUB3QsiSx8PYSiUPSd6-ctxCA1kELQQ63_dL4iD0ieCKgJIXfQixAlFBxYBUBHOmDtCCcBAlZ5IcogWmgpVS8F8f0VFKW4wJl4Qt0PmNGZrQF-vbVXG1H-zYhSF9K5ZDcRnb0HS2uNu4EF1_gj54s0vu9O9-jO6vLu9WP8r1z-_Xq-W6tJyxseTCEuodF7wB6ZUy1hLpG1BUSGU9YUJaKo2vnaCgam9rKWreqJo6xWrc0GP0eZ77EMPvvUuj3oZ9HPKVGggI4AR4hr7OUGt2TneDD2M0tnWDi2YXBue7fLyUCniNJc54-QaeV-P6zr7Fn7_iMzK6p7E1-5T09e3NK5TOqI0hpei8fohdb-KzJlhP3eipGw1Cg87d6JdusnU2W9s05vSfQkWNBUwxzPH01Nind878Mkubrt08dnH-6GT3Ztz8x9M_dbCmdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212625125</pqid></control><display><type>article</type><title>Random LSC Functions: An Ergodic Theorem</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><source>JSTOR Archival Journals</source><creator>Korf, Lisa A ; Wets, Roger J.-B</creator><creatorcontrib>Korf, Lisa A ; Wets, Roger J.-B</creatorcontrib><description>An ergodic theorem for random lsc (lower semicontinuous) functions is obtained by relying on a "scalarization" of such functions. In the process, Kolmogorov's extension theorem for random lsc functions is established. Applications to statistical estimation problems, composite materials, and stochastic optimization problems are briefly noted.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.26.2.421.10548</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Bayesian analysis ; Bayesian decision theory ; composite materials ; Decision theory ; epi-convergence ; ergodic theorem ; Ergodic theory ; Homogenization ; Kolmogorov extension ; Kolmogorov's extension theorem ; Mathematical functions ; Probabilities ; random lower semicontinuous functions ; random samples ; Random variables ; Scalability ; Stationary processes ; Stochastic models ; stochastic optimization ; stochastic programming ; Studies ; Topological spaces ; Topological theorems ; Topology</subject><ispartof>Mathematics of operations research, 2001-05, Vol.26 (2), p.421-445</ispartof><rights>Copyright 2001 Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2001 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences May 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3</citedby><cites>FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3690628$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/212625125?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362,58237,58470</link.rule.ids></links><search><creatorcontrib>Korf, Lisa A</creatorcontrib><creatorcontrib>Wets, Roger J.-B</creatorcontrib><title>Random LSC Functions: An Ergodic Theorem</title><title>Mathematics of operations research</title><description>An ergodic theorem for random lsc (lower semicontinuous) functions is obtained by relying on a "scalarization" of such functions. In the process, Kolmogorov's extension theorem for random lsc functions is established. Applications to statistical estimation problems, composite materials, and stochastic optimization problems are briefly noted.</description><subject>Bayesian analysis</subject><subject>Bayesian decision theory</subject><subject>composite materials</subject><subject>Decision theory</subject><subject>epi-convergence</subject><subject>ergodic theorem</subject><subject>Ergodic theory</subject><subject>Homogenization</subject><subject>Kolmogorov extension</subject><subject>Kolmogorov's extension theorem</subject><subject>Mathematical functions</subject><subject>Probabilities</subject><subject>random lower semicontinuous functions</subject><subject>random samples</subject><subject>Random variables</subject><subject>Scalability</subject><subject>Stationary processes</subject><subject>Stochastic models</subject><subject>stochastic optimization</subject><subject>stochastic programming</subject><subject>Studies</subject><subject>Topological spaces</subject><subject>Topological theorems</subject><subject>Topology</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkctq3DAYhUVIoZPLEzQL002zqB3p19XdDUPSBgYKuUB3QsiSx8PYSiUPSd6-ctxCA1kELQQ63_dL4iD0ieCKgJIXfQixAlFBxYBUBHOmDtCCcBAlZ5IcogWmgpVS8F8f0VFKW4wJl4Qt0PmNGZrQF-vbVXG1H-zYhSF9K5ZDcRnb0HS2uNu4EF1_gj54s0vu9O9-jO6vLu9WP8r1z-_Xq-W6tJyxseTCEuodF7wB6ZUy1hLpG1BUSGU9YUJaKo2vnaCgam9rKWreqJo6xWrc0GP0eZ77EMPvvUuj3oZ9HPKVGggI4AR4hr7OUGt2TneDD2M0tnWDi2YXBue7fLyUCniNJc54-QaeV-P6zr7Fn7_iMzK6p7E1-5T09e3NK5TOqI0hpei8fohdb-KzJlhP3eipGw1Cg87d6JdusnU2W9s05vSfQkWNBUwxzPH01Nind878Mkubrt08dnH-6GT3Ztz8x9M_dbCmdg</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Korf, Lisa A</creator><creator>Wets, Roger J.-B</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20010501</creationdate><title>Random LSC Functions: An Ergodic Theorem</title><author>Korf, Lisa A ; Wets, Roger J.-B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Bayesian analysis</topic><topic>Bayesian decision theory</topic><topic>composite materials</topic><topic>Decision theory</topic><topic>epi-convergence</topic><topic>ergodic theorem</topic><topic>Ergodic theory</topic><topic>Homogenization</topic><topic>Kolmogorov extension</topic><topic>Kolmogorov's extension theorem</topic><topic>Mathematical functions</topic><topic>Probabilities</topic><topic>random lower semicontinuous functions</topic><topic>random samples</topic><topic>Random variables</topic><topic>Scalability</topic><topic>Stationary processes</topic><topic>Stochastic models</topic><topic>stochastic optimization</topic><topic>stochastic programming</topic><topic>Studies</topic><topic>Topological spaces</topic><topic>Topological theorems</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korf, Lisa A</creatorcontrib><creatorcontrib>Wets, Roger J.-B</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korf, Lisa A</au><au>Wets, Roger J.-B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random LSC Functions: An Ergodic Theorem</atitle><jtitle>Mathematics of operations research</jtitle><date>2001-05-01</date><risdate>2001</risdate><volume>26</volume><issue>2</issue><spage>421</spage><epage>445</epage><pages>421-445</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>An ergodic theorem for random lsc (lower semicontinuous) functions is obtained by relying on a "scalarization" of such functions. In the process, Kolmogorov's extension theorem for random lsc functions is established. Applications to statistical estimation problems, composite materials, and stochastic optimization problems are briefly noted.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.26.2.421.10548</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-765X
ispartof Mathematics of operations research, 2001-05, Vol.26 (2), p.421-445
issn 0364-765X
1526-5471
language eng
recordid cdi_gale_infotracgeneralonefile_A78259070
source EBSCOhost Business Source Ultimate; ABI/INFORM Global; JSTOR Archival Journals
subjects Bayesian analysis
Bayesian decision theory
composite materials
Decision theory
epi-convergence
ergodic theorem
Ergodic theory
Homogenization
Kolmogorov extension
Kolmogorov's extension theorem
Mathematical functions
Probabilities
random lower semicontinuous functions
random samples
Random variables
Scalability
Stationary processes
Stochastic models
stochastic optimization
stochastic programming
Studies
Topological spaces
Topological theorems
Topology
title Random LSC Functions: An Ergodic Theorem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20LSC%20Functions:%20An%20Ergodic%20Theorem&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Korf,%20Lisa%20A&rft.date=2001-05-01&rft.volume=26&rft.issue=2&rft.spage=421&rft.epage=445&rft.pages=421-445&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.26.2.421.10548&rft_dat=%3Cgale_proqu%3EA78259070%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c544t-56c13fe565d27f88acc17fd283678cf1467c37af9e63289fc97695d893e8490d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=212625125&rft_id=info:pmid/&rft_galeid=A78259070&rft_jstor_id=3690628&rfr_iscdi=true