Loading…

Consumer Learning of New Binary Attribute Importance Accounting for Priors, Bias, and Order Effects

This paper develops and calibrates a simple yet comprehensive set of models for the evolution of binary attribute importance weights, based on a cue-goal association framework. We argue that the utility a consumer ascribes to an attribute comes from its association with the achievement of a goal. We...

Full description

Saved in:
Bibliographic Details
Published in:Marketing science (Providence, R.I.) R.I.), 2012-07, Vol.31 (4), p.549-566
Main Authors: Chylinski, Mathew B., Roberts, John H., Hardie, Bruce G. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c566t-d00e85182b17803e1f8ca3d5a24cf3201c7db6a22bc9f2ea1a7be9bc7abc1b3c3
cites cdi_FETCH-LOGICAL-c566t-d00e85182b17803e1f8ca3d5a24cf3201c7db6a22bc9f2ea1a7be9bc7abc1b3c3
container_end_page 566
container_issue 4
container_start_page 549
container_title Marketing science (Providence, R.I.)
container_volume 31
creator Chylinski, Mathew B.
Roberts, John H.
Hardie, Bruce G. S.
description This paper develops and calibrates a simple yet comprehensive set of models for the evolution of binary attribute importance weights, based on a cue-goal association framework. We argue that the utility a consumer ascribes to an attribute comes from its association with the achievement of a goal. We investigate how associations may be represented and then track back the relationship of these associations to the utility function. We explain why we believe this to be an important problem before providing an overview of the extensive literature on learning models. This literature identifies key phenomena and provides a foundation for our modeling of binary attribute importance learning, which can test for three departures from "rational" learning-bias, existence of priors, and the unequal weighting of sample observations (order effects). We apply our models in a laboratory setting under a number of different relationship strengths, and we find that, in our application, consumers' learning about attribute-goal associations exhibits bias and the effects of prior beliefs when the sample realizations occur with and without noise, and order effects when the sample realizations occur with noise. We provide an example of how our models can be extended to learning about more than one attribute.
doi_str_mv 10.1287/mksc.1120.0719
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A301085095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A301085095</galeid><jstor_id>41687946</jstor_id><sourcerecordid>A301085095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-d00e85182b17803e1f8ca3d5a24cf3201c7db6a22bc9f2ea1a7be9bc7abc1b3c3</originalsourceid><addsrcrecordid>eNqFks-L1DAUx4soOK5evQkFLx62Y360TXoch1UXBteDgreQpi81Y5uMeSmL_70pK67KgARe4PH5fnkv-RbFc0q2lEnxev6GZkspI1siaPeg2NCGtVVTyy8Piw0RnFWMd93j4gnikRAiGJGbwuyDx2WGWB5AR-_8WAZbfoDb8o3zOv4odylF1y8Jyuv5FGLS3kC5MyYsPq20DbH8GF2IeJklOlfth_ImDtnyylowCZ8Wj6yeEJ79ui-Kz2-vPu3fV4ebd9f73aEyTdumaiAEZEMl66mQhAO10mg-NJrVxnJGqBFD32rGetNZBppq0UPXG6F7Q3tu-EXx6s73FMP3BTCp2aGBadIewoIqP00juKCSZ_TlP-gxLNHn6RQlvG06WXf0nhr1BMp5G1LUZjVVO04okQ3pmkxVZ6gRPEQ9BQ_W5fZf_PYMn88AszNnBZd_CPoFnQfMBd34NeGoF8Sz_iYGxAhWnaKb81_m1dSaFLUmRa1JUWtSsuDFneCIKcTfdE1bKbq6vV9wnTXO-D-_nx_Qx7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1036598491</pqid></control><display><type>article</type><title>Consumer Learning of New Binary Attribute Importance Accounting for Priors, Bias, and Order Effects</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>JSTOR</source><source>Access via Publisher Site</source><creator>Chylinski, Mathew B. ; Roberts, John H. ; Hardie, Bruce G. S.</creator><creatorcontrib>Chylinski, Mathew B. ; Roberts, John H. ; Hardie, Bruce G. S.</creatorcontrib><description>This paper develops and calibrates a simple yet comprehensive set of models for the evolution of binary attribute importance weights, based on a cue-goal association framework. We argue that the utility a consumer ascribes to an attribute comes from its association with the achievement of a goal. We investigate how associations may be represented and then track back the relationship of these associations to the utility function. We explain why we believe this to be an important problem before providing an overview of the extensive literature on learning models. This literature identifies key phenomena and provides a foundation for our modeling of binary attribute importance learning, which can test for three departures from "rational" learning-bias, existence of priors, and the unequal weighting of sample observations (order effects). We apply our models in a laboratory setting under a number of different relationship strengths, and we find that, in our application, consumers' learning about attribute-goal associations exhibits bias and the effects of prior beliefs when the sample realizations occur with and without noise, and order effects when the sample realizations occur with noise. We provide an example of how our models can be extended to learning about more than one attribute.</description><identifier>ISSN: 0732-2399</identifier><identifier>EISSN: 1526-548X</identifier><identifier>DOI: 10.1287/mksc.1120.0719</identifier><identifier>CODEN: MARSE5</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; Associative learning ; Attribution theory ; Bias ; Consumer advertising ; Consumer behavior ; Consumer behaviour ; Consumer education ; Consumer psychology ; consumer utility ; Consumers ; Economic theory ; Experimental methods ; Laboratories ; Learning ; Marketing ; Modeling ; Noise ; Objectives ; Observational learning ; Parametric models ; preference dynamics ; Preferences ; Probability ; Studies ; Utility functions ; Utility models</subject><ispartof>Marketing science (Providence, R.I.), 2012-07, Vol.31 (4), p.549-566</ispartof><rights>Copyright 2012</rights><rights>COPYRIGHT 2012 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Jul/Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-d00e85182b17803e1f8ca3d5a24cf3201c7db6a22bc9f2ea1a7be9bc7abc1b3c3</citedby><cites>FETCH-LOGICAL-c566t-d00e85182b17803e1f8ca3d5a24cf3201c7db6a22bc9f2ea1a7be9bc7abc1b3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41687946$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mksc.1120.0719$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,33223,33224,58238,58471,62616</link.rule.ids></links><search><creatorcontrib>Chylinski, Mathew B.</creatorcontrib><creatorcontrib>Roberts, John H.</creatorcontrib><creatorcontrib>Hardie, Bruce G. S.</creatorcontrib><title>Consumer Learning of New Binary Attribute Importance Accounting for Priors, Bias, and Order Effects</title><title>Marketing science (Providence, R.I.)</title><description>This paper develops and calibrates a simple yet comprehensive set of models for the evolution of binary attribute importance weights, based on a cue-goal association framework. We argue that the utility a consumer ascribes to an attribute comes from its association with the achievement of a goal. We investigate how associations may be represented and then track back the relationship of these associations to the utility function. We explain why we believe this to be an important problem before providing an overview of the extensive literature on learning models. This literature identifies key phenomena and provides a foundation for our modeling of binary attribute importance learning, which can test for three departures from "rational" learning-bias, existence of priors, and the unequal weighting of sample observations (order effects). We apply our models in a laboratory setting under a number of different relationship strengths, and we find that, in our application, consumers' learning about attribute-goal associations exhibits bias and the effects of prior beliefs when the sample realizations occur with and without noise, and order effects when the sample realizations occur with noise. We provide an example of how our models can be extended to learning about more than one attribute.</description><subject>Analysis</subject><subject>Associative learning</subject><subject>Attribution theory</subject><subject>Bias</subject><subject>Consumer advertising</subject><subject>Consumer behavior</subject><subject>Consumer behaviour</subject><subject>Consumer education</subject><subject>Consumer psychology</subject><subject>consumer utility</subject><subject>Consumers</subject><subject>Economic theory</subject><subject>Experimental methods</subject><subject>Laboratories</subject><subject>Learning</subject><subject>Marketing</subject><subject>Modeling</subject><subject>Noise</subject><subject>Objectives</subject><subject>Observational learning</subject><subject>Parametric models</subject><subject>preference dynamics</subject><subject>Preferences</subject><subject>Probability</subject><subject>Studies</subject><subject>Utility functions</subject><subject>Utility models</subject><issn>0732-2399</issn><issn>1526-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFks-L1DAUx4soOK5evQkFLx62Y360TXoch1UXBteDgreQpi81Y5uMeSmL_70pK67KgARe4PH5fnkv-RbFc0q2lEnxev6GZkspI1siaPeg2NCGtVVTyy8Piw0RnFWMd93j4gnikRAiGJGbwuyDx2WGWB5AR-_8WAZbfoDb8o3zOv4odylF1y8Jyuv5FGLS3kC5MyYsPq20DbH8GF2IeJklOlfth_ImDtnyylowCZ8Wj6yeEJ79ui-Kz2-vPu3fV4ebd9f73aEyTdumaiAEZEMl66mQhAO10mg-NJrVxnJGqBFD32rGetNZBppq0UPXG6F7Q3tu-EXx6s73FMP3BTCp2aGBadIewoIqP00juKCSZ_TlP-gxLNHn6RQlvG06WXf0nhr1BMp5G1LUZjVVO04okQ3pmkxVZ6gRPEQ9BQ_W5fZf_PYMn88AszNnBZd_CPoFnQfMBd34NeGoF8Sz_iYGxAhWnaKb81_m1dSaFLUmRa1JUWtSsuDFneCIKcTfdE1bKbq6vV9wnTXO-D-_nx_Qx7M</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Chylinski, Mathew B.</creator><creator>Roberts, John H.</creator><creator>Hardie, Bruce G. S.</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences (INFORMS)</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20120701</creationdate><title>Consumer Learning of New Binary Attribute Importance Accounting for Priors, Bias, and Order Effects</title><author>Chylinski, Mathew B. ; Roberts, John H. ; Hardie, Bruce G. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-d00e85182b17803e1f8ca3d5a24cf3201c7db6a22bc9f2ea1a7be9bc7abc1b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Associative learning</topic><topic>Attribution theory</topic><topic>Bias</topic><topic>Consumer advertising</topic><topic>Consumer behavior</topic><topic>Consumer behaviour</topic><topic>Consumer education</topic><topic>Consumer psychology</topic><topic>consumer utility</topic><topic>Consumers</topic><topic>Economic theory</topic><topic>Experimental methods</topic><topic>Laboratories</topic><topic>Learning</topic><topic>Marketing</topic><topic>Modeling</topic><topic>Noise</topic><topic>Objectives</topic><topic>Observational learning</topic><topic>Parametric models</topic><topic>preference dynamics</topic><topic>Preferences</topic><topic>Probability</topic><topic>Studies</topic><topic>Utility functions</topic><topic>Utility models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chylinski, Mathew B.</creatorcontrib><creatorcontrib>Roberts, John H.</creatorcontrib><creatorcontrib>Hardie, Bruce G. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Marketing science (Providence, R.I.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chylinski, Mathew B.</au><au>Roberts, John H.</au><au>Hardie, Bruce G. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consumer Learning of New Binary Attribute Importance Accounting for Priors, Bias, and Order Effects</atitle><jtitle>Marketing science (Providence, R.I.)</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>31</volume><issue>4</issue><spage>549</spage><epage>566</epage><pages>549-566</pages><issn>0732-2399</issn><eissn>1526-548X</eissn><coden>MARSE5</coden><abstract>This paper develops and calibrates a simple yet comprehensive set of models for the evolution of binary attribute importance weights, based on a cue-goal association framework. We argue that the utility a consumer ascribes to an attribute comes from its association with the achievement of a goal. We investigate how associations may be represented and then track back the relationship of these associations to the utility function. We explain why we believe this to be an important problem before providing an overview of the extensive literature on learning models. This literature identifies key phenomena and provides a foundation for our modeling of binary attribute importance learning, which can test for three departures from "rational" learning-bias, existence of priors, and the unequal weighting of sample observations (order effects). We apply our models in a laboratory setting under a number of different relationship strengths, and we find that, in our application, consumers' learning about attribute-goal associations exhibits bias and the effects of prior beliefs when the sample realizations occur with and without noise, and order effects when the sample realizations occur with noise. We provide an example of how our models can be extended to learning about more than one attribute.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mksc.1120.0719</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0732-2399
ispartof Marketing science (Providence, R.I.), 2012-07, Vol.31 (4), p.549-566
issn 0732-2399
1526-548X
language eng
recordid cdi_gale_infotracmisc_A301085095
source International Bibliography of the Social Sciences (IBSS); Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; JSTOR; Access via Publisher Site
subjects Analysis
Associative learning
Attribution theory
Bias
Consumer advertising
Consumer behavior
Consumer behaviour
Consumer education
Consumer psychology
consumer utility
Consumers
Economic theory
Experimental methods
Laboratories
Learning
Marketing
Modeling
Noise
Objectives
Observational learning
Parametric models
preference dynamics
Preferences
Probability
Studies
Utility functions
Utility models
title Consumer Learning of New Binary Attribute Importance Accounting for Priors, Bias, and Order Effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consumer%20Learning%20of%20New%20Binary%20Attribute%20Importance%20Accounting%20for%20Priors,%20Bias,%20and%20Order%20Effects&rft.jtitle=Marketing%20science%20(Providence,%20R.I.)&rft.au=Chylinski,%20Mathew%20B.&rft.date=2012-07-01&rft.volume=31&rft.issue=4&rft.spage=549&rft.epage=566&rft.pages=549-566&rft.issn=0732-2399&rft.eissn=1526-548X&rft.coden=MARSE5&rft_id=info:doi/10.1287/mksc.1120.0719&rft_dat=%3Cgale_cross%3EA301085095%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c566t-d00e85182b17803e1f8ca3d5a24cf3201c7db6a22bc9f2ea1a7be9bc7abc1b3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1036598491&rft_id=info:pmid/&rft_galeid=A301085095&rft_jstor_id=41687946&rfr_iscdi=true