Loading…

Subexponential Estimations in the Shirshov Height Theorem

We study subexponential estimates in the Shirshov height theorem. Our proof uses Latyshev’s idea of the Dilworth theorem application. G. Chelnokov proposed using this idea in the nonmultilinear case.

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2013-09, Vol.193 (3), p.378-381
Main Authors: Belov-Kanel, A., Kharitonov, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3379-41417e0efbcbdd7c8d83b40cbe570ca96163d1b48bf268cab580431e02bd3ded3
container_end_page 381
container_issue 3
container_start_page 378
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 193
creator Belov-Kanel, A.
Kharitonov, M.
description We study subexponential estimates in the Shirshov height theorem. Our proof uses Latyshev’s idea of the Dilworth theorem application. G. Chelnokov proposed using this idea in the nonmultilinear case.
doi_str_mv 10.1007/s10958-013-1464-9
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A352488702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A352488702</galeid><sourcerecordid>A352488702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3379-41417e0efbcbdd7c8d83b40cbe570ca96163d1b48bf268cab580431e02bd3ded3</originalsourceid><addsrcrecordid>eNp9kc9LwzAUx4soOKd_gLeCJw-ZSZM26XGM6QYDwc1zSNLXNqM_RtKJ_vdm1MtgSA4vhM_nPfK-UfRI8IxgzF88wXkqECYUEZYxlF9FE5JyigTP0-twxzxBlHJ2G915v8fByQSdRPn2qOH70HfQDVY18dIPtlWD7Tsf2y4eaoi3tXW-7r_iFdiqHuJdDb2D9j66KVXj4eGvTqPP1-VusUKb97f1Yr5BJozLESOMcMBQaqOLghtRCKoZNhpSjo3KM5LRgmgmdJlkwiidCswoAZzoghZQ0Gn0NPatVAPSdmU_OGVa642c0zRhQnCcBApdoCrowKkm_K604fmMn13gwymgteai8HwmBGaA76FSR-_levtxzpKRNa733kEpDy5s1f1IguUpLjnGJUNc8hSXzIOTjI4PbFeBk_v-6Lqw2X-kX3kSlYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Subexponential Estimations in the Shirshov Height Theorem</title><source>Springer Nature</source><creator>Belov-Kanel, A. ; Kharitonov, M.</creator><creatorcontrib>Belov-Kanel, A. ; Kharitonov, M.</creatorcontrib><description>We study subexponential estimates in the Shirshov height theorem. Our proof uses Latyshev’s idea of the Dilworth theorem application. G. Chelnokov proposed using this idea in the nonmultilinear case.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-013-1464-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2013-09, Vol.193 (3), p.378-381</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3379-41417e0efbcbdd7c8d83b40cbe570ca96163d1b48bf268cab580431e02bd3ded3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Belov-Kanel, A.</creatorcontrib><creatorcontrib>Kharitonov, M.</creatorcontrib><title>Subexponential Estimations in the Shirshov Height Theorem</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study subexponential estimates in the Shirshov height theorem. Our proof uses Latyshev’s idea of the Dilworth theorem application. G. Chelnokov proposed using this idea in the nonmultilinear case.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kc9LwzAUx4soOKd_gLeCJw-ZSZM26XGM6QYDwc1zSNLXNqM_RtKJ_vdm1MtgSA4vhM_nPfK-UfRI8IxgzF88wXkqECYUEZYxlF9FE5JyigTP0-twxzxBlHJ2G915v8fByQSdRPn2qOH70HfQDVY18dIPtlWD7Tsf2y4eaoi3tXW-7r_iFdiqHuJdDb2D9j66KVXj4eGvTqPP1-VusUKb97f1Yr5BJozLESOMcMBQaqOLghtRCKoZNhpSjo3KM5LRgmgmdJlkwiidCswoAZzoghZQ0Gn0NPatVAPSdmU_OGVa642c0zRhQnCcBApdoCrowKkm_K604fmMn13gwymgteai8HwmBGaA76FSR-_levtxzpKRNa733kEpDy5s1f1IguUpLjnGJUNc8hSXzIOTjI4PbFeBk_v-6Lqw2X-kX3kSlYc</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Belov-Kanel, A.</creator><creator>Kharitonov, M.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20130901</creationdate><title>Subexponential Estimations in the Shirshov Height Theorem</title><author>Belov-Kanel, A. ; Kharitonov, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3379-41417e0efbcbdd7c8d83b40cbe570ca96163d1b48bf268cab580431e02bd3ded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belov-Kanel, A.</creatorcontrib><creatorcontrib>Kharitonov, M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belov-Kanel, A.</au><au>Kharitonov, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subexponential Estimations in the Shirshov Height Theorem</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>193</volume><issue>3</issue><spage>378</spage><epage>381</epage><pages>378-381</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study subexponential estimates in the Shirshov height theorem. Our proof uses Latyshev’s idea of the Dilworth theorem application. G. Chelnokov proposed using this idea in the nonmultilinear case.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10958-013-1464-9</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2013-09, Vol.193 (3), p.378-381
issn 1072-3374
1573-8795
language eng
recordid cdi_gale_infotracmisc_A352488702
source Springer Nature
subjects Algebra
Mathematics
Mathematics and Statistics
title Subexponential Estimations in the Shirshov Height Theorem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subexponential%20Estimations%20in%20the%20Shirshov%20Height%20Theorem&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Belov-Kanel,%20A.&rft.date=2013-09-01&rft.volume=193&rft.issue=3&rft.spage=378&rft.epage=381&rft.pages=378-381&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-013-1464-9&rft_dat=%3Cgale_cross%3EA352488702%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3379-41417e0efbcbdd7c8d83b40cbe570ca96163d1b48bf268cab580431e02bd3ded3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A352488702&rfr_iscdi=true