Loading…
Subexponential Estimations in the Shirshov Height Theorem
We study subexponential estimates in the Shirshov height theorem. Our proof uses Latyshev’s idea of the Dilworth theorem application. G. Chelnokov proposed using this idea in the nonmultilinear case.
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2013-09, Vol.193 (3), p.378-381 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3379-41417e0efbcbdd7c8d83b40cbe570ca96163d1b48bf268cab580431e02bd3ded3 |
container_end_page | 381 |
container_issue | 3 |
container_start_page | 378 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 193 |
creator | Belov-Kanel, A. Kharitonov, M. |
description | We study subexponential estimates in the Shirshov height theorem. Our proof uses Latyshev’s idea of the Dilworth theorem application. G. Chelnokov proposed using this idea in the nonmultilinear case. |
doi_str_mv | 10.1007/s10958-013-1464-9 |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A352488702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A352488702</galeid><sourcerecordid>A352488702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3379-41417e0efbcbdd7c8d83b40cbe570ca96163d1b48bf268cab580431e02bd3ded3</originalsourceid><addsrcrecordid>eNp9kc9LwzAUx4soOKd_gLeCJw-ZSZM26XGM6QYDwc1zSNLXNqM_RtKJ_vdm1MtgSA4vhM_nPfK-UfRI8IxgzF88wXkqECYUEZYxlF9FE5JyigTP0-twxzxBlHJ2G915v8fByQSdRPn2qOH70HfQDVY18dIPtlWD7Tsf2y4eaoi3tXW-7r_iFdiqHuJdDb2D9j66KVXj4eGvTqPP1-VusUKb97f1Yr5BJozLESOMcMBQaqOLghtRCKoZNhpSjo3KM5LRgmgmdJlkwiidCswoAZzoghZQ0Gn0NPatVAPSdmU_OGVa642c0zRhQnCcBApdoCrowKkm_K604fmMn13gwymgteai8HwmBGaA76FSR-_levtxzpKRNa733kEpDy5s1f1IguUpLjnGJUNc8hSXzIOTjI4PbFeBk_v-6Lqw2X-kX3kSlYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Subexponential Estimations in the Shirshov Height Theorem</title><source>Springer Nature</source><creator>Belov-Kanel, A. ; Kharitonov, M.</creator><creatorcontrib>Belov-Kanel, A. ; Kharitonov, M.</creatorcontrib><description>We study subexponential estimates in the Shirshov height theorem. Our proof uses Latyshev’s idea of the Dilworth theorem application. G. Chelnokov proposed using this idea in the nonmultilinear case.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-013-1464-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2013-09, Vol.193 (3), p.378-381</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3379-41417e0efbcbdd7c8d83b40cbe570ca96163d1b48bf268cab580431e02bd3ded3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Belov-Kanel, A.</creatorcontrib><creatorcontrib>Kharitonov, M.</creatorcontrib><title>Subexponential Estimations in the Shirshov Height Theorem</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study subexponential estimates in the Shirshov height theorem. Our proof uses Latyshev’s idea of the Dilworth theorem application. G. Chelnokov proposed using this idea in the nonmultilinear case.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kc9LwzAUx4soOKd_gLeCJw-ZSZM26XGM6QYDwc1zSNLXNqM_RtKJ_vdm1MtgSA4vhM_nPfK-UfRI8IxgzF88wXkqECYUEZYxlF9FE5JyigTP0-twxzxBlHJ2G915v8fByQSdRPn2qOH70HfQDVY18dIPtlWD7Tsf2y4eaoi3tXW-7r_iFdiqHuJdDb2D9j66KVXj4eGvTqPP1-VusUKb97f1Yr5BJozLESOMcMBQaqOLghtRCKoZNhpSjo3KM5LRgmgmdJlkwiidCswoAZzoghZQ0Gn0NPatVAPSdmU_OGVa642c0zRhQnCcBApdoCrowKkm_K604fmMn13gwymgteai8HwmBGaA76FSR-_levtxzpKRNa733kEpDy5s1f1IguUpLjnGJUNc8hSXzIOTjI4PbFeBk_v-6Lqw2X-kX3kSlYc</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Belov-Kanel, A.</creator><creator>Kharitonov, M.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20130901</creationdate><title>Subexponential Estimations in the Shirshov Height Theorem</title><author>Belov-Kanel, A. ; Kharitonov, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3379-41417e0efbcbdd7c8d83b40cbe570ca96163d1b48bf268cab580431e02bd3ded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belov-Kanel, A.</creatorcontrib><creatorcontrib>Kharitonov, M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belov-Kanel, A.</au><au>Kharitonov, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subexponential Estimations in the Shirshov Height Theorem</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>193</volume><issue>3</issue><spage>378</spage><epage>381</epage><pages>378-381</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study subexponential estimates in the Shirshov height theorem. Our proof uses Latyshev’s idea of the Dilworth theorem application. G. Chelnokov proposed using this idea in the nonmultilinear case.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10958-013-1464-9</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2013-09, Vol.193 (3), p.378-381 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_gale_infotracmisc_A352488702 |
source | Springer Nature |
subjects | Algebra Mathematics Mathematics and Statistics |
title | Subexponential Estimations in the Shirshov Height Theorem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subexponential%20Estimations%20in%20the%20Shirshov%20Height%20Theorem&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Belov-Kanel,%20A.&rft.date=2013-09-01&rft.volume=193&rft.issue=3&rft.spage=378&rft.epage=381&rft.pages=378-381&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-013-1464-9&rft_dat=%3Cgale_cross%3EA352488702%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3379-41417e0efbcbdd7c8d83b40cbe570ca96163d1b48bf268cab580431e02bd3ded3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A352488702&rfr_iscdi=true |