Loading…

Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency

Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and disease. In cytomegalovirus infection, expression of the major immediate early (IE) genes is a critical checkpoint, driving the lytic replication cycle upon primary infection or reactivation from latency....

Full description

Saved in:
Bibliographic Details
Published in:PLoS pathogens 2014-02, Vol.10 (2), p.e1003962-e1003962
Main Authors: Dağ, Franziska, Dölken, Lars, Holzki, Julia, Drabig, Anja, Weingärtner, Adrien, Schwerk, Johannes, Lienenklaus, Stefan, Conte, Ianina, Geffers, Robert, Davenport, Colin, Rand, Ulfert, Köster, Mario, Weiß, Siegfried, Adler, Barbara, Wirth, Dagmar, Messerle, Martin, Hauser, Hansjörg, Cičin-Šain, Luka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-ecc5ba461e27ba3235b7eb4a050dd4e202d8b9362710dc35a1409f4fc8b8856c3
cites cdi_FETCH-LOGICAL-c526t-ecc5ba461e27ba3235b7eb4a050dd4e202d8b9362710dc35a1409f4fc8b8856c3
container_end_page e1003962
container_issue 2
container_start_page e1003962
container_title PLoS pathogens
container_volume 10
creator Dağ, Franziska
Dölken, Lars
Holzki, Julia
Drabig, Anja
Weingärtner, Adrien
Schwerk, Johannes
Lienenklaus, Stefan
Conte, Ianina
Geffers, Robert
Davenport, Colin
Rand, Ulfert
Köster, Mario
Weiß, Siegfried
Adler, Barbara
Wirth, Dagmar
Messerle, Martin
Hauser, Hansjörg
Cičin-Šain, Luka
description Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and disease. In cytomegalovirus infection, expression of the major immediate early (IE) genes is a critical checkpoint, driving the lytic replication cycle upon primary infection or reactivation from latency. While it is known that type I interferon (IFN) limits lytic CMV replication, its role in latency and reactivation has not been explored. In the model of mouse CMV infection, we show here that IFNβ blocks mouse CMV replication at the level of IE transcription in IFN-responding endothelial cells and fibroblasts. The IFN-mediated inhibition of IE genes was entirely reversible, arguing that the IFN-effect may be consistent with viral latency. Importantly, the response to IFNβ is stochastic, and MCMV IE transcription and replication were repressed only in IFN-responsive cells, while the IFN-unresponsive cells remained permissive for lytic MCMV infection. IFN blocked the viral lytic replication cycle by upregulating the nuclear domain 10 (ND10) components, PML, Sp100 and Daxx, and their knockdown by shRNA rescued viral replication in the presence of IFNβ. Finally, IFNβ prevented MCMV reactivation from endothelial cells derived from latently infected mice, validating our results in a biologically relevant setting. Therefore, our data do not only define for the first time the molecular mechanism of IFN-mediated control of CMV infection, but also indicate that the reversible inhibition of the virus lytic cycle by IFNβ is consistent with the establishment of CMV latency.
doi_str_mv 10.1371/journal.ppat.1003962
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_gale_infotracmisc_A364854203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A364854203</galeid><doaj_id>oai_doaj_org_article_095f735c42a44447901e4efb355df8b6</doaj_id><sourcerecordid>A364854203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-ecc5ba461e27ba3235b7eb4a050dd4e202d8b9362710dc35a1409f4fc8b8856c3</originalsourceid><addsrcrecordid>eNpVkluL1DAUgIso7kX_gWjBF19mzL3ti7Asug4sCKIvvoQkPakZMsmYtAv992a23WU3L7l950tycqrqHUZbTBv8eR-nFJTfHo9q3GKEaCfIi-occ043DW3Yyyfjs-oi5z1CDFMsXldnhPFWYMHPqz8_4Q5SdtpDnZ2HYFwY6mhrM4_xAIPy8c6lKdcDhDLPtZ7rcT5CvatdGCFZSDHUQyySkOsF9WosnvlN9coqn-Ht2l9Wv799_XX9fXP742Z3fXW7MZyIcQPGcK2YwEAarSihXDegmUIc9T0Dgkjf6o4K0mDUG8oVZqizzJpWty0Xhl5WHxbv0ccs17RkiTlqWkpE1xZitxB9VHt5TO6g0iyjcvJ-IaZBqjQ640GijtuGcsOIYqU1HcLAwGrKeW9bLYrry3rapA_QGwhjUv6Z9PlOcH9lyY-kHUW87Yrg0ypI8d8EeZQHlw14rwLE6f7eDAskCC7oxwUt3wDSBRuL0ZxweUUFazkjiBaKLZRJMecE9vEyGMlTqTzkRJ5KRa6lUsLeP33IY9BDbdD_p9y9pQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504160621</pqid></control><display><type>article</type><title>Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Dağ, Franziska ; Dölken, Lars ; Holzki, Julia ; Drabig, Anja ; Weingärtner, Adrien ; Schwerk, Johannes ; Lienenklaus, Stefan ; Conte, Ianina ; Geffers, Robert ; Davenport, Colin ; Rand, Ulfert ; Köster, Mario ; Weiß, Siegfried ; Adler, Barbara ; Wirth, Dagmar ; Messerle, Martin ; Hauser, Hansjörg ; Cičin-Šain, Luka</creator><creatorcontrib>Dağ, Franziska ; Dölken, Lars ; Holzki, Julia ; Drabig, Anja ; Weingärtner, Adrien ; Schwerk, Johannes ; Lienenklaus, Stefan ; Conte, Ianina ; Geffers, Robert ; Davenport, Colin ; Rand, Ulfert ; Köster, Mario ; Weiß, Siegfried ; Adler, Barbara ; Wirth, Dagmar ; Messerle, Martin ; Hauser, Hansjörg ; Cičin-Šain, Luka</creatorcontrib><description>Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and disease. In cytomegalovirus infection, expression of the major immediate early (IE) genes is a critical checkpoint, driving the lytic replication cycle upon primary infection or reactivation from latency. While it is known that type I interferon (IFN) limits lytic CMV replication, its role in latency and reactivation has not been explored. In the model of mouse CMV infection, we show here that IFNβ blocks mouse CMV replication at the level of IE transcription in IFN-responding endothelial cells and fibroblasts. The IFN-mediated inhibition of IE genes was entirely reversible, arguing that the IFN-effect may be consistent with viral latency. Importantly, the response to IFNβ is stochastic, and MCMV IE transcription and replication were repressed only in IFN-responsive cells, while the IFN-unresponsive cells remained permissive for lytic MCMV infection. IFN blocked the viral lytic replication cycle by upregulating the nuclear domain 10 (ND10) components, PML, Sp100 and Daxx, and their knockdown by shRNA rescued viral replication in the presence of IFNβ. Finally, IFNβ prevented MCMV reactivation from endothelial cells derived from latently infected mice, validating our results in a biologically relevant setting. Therefore, our data do not only define for the first time the molecular mechanism of IFN-mediated control of CMV infection, but also indicate that the reversible inhibition of the virus lytic cycle by IFNβ is consistent with the establishment of CMV latency.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1003962</identifier><identifier>PMID: 24586165</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology ; Cell Separation ; Cytomegalovirus ; Cytomegalovirus - genetics ; Cytomegalovirus Infections - genetics ; Cytomegalovirus Infections - immunology ; Cytomegaloviruses ; Disease Models, Animal ; Fluorescent Antibody Technique ; Gene Expression Regulation, Viral - genetics ; Gene Silencing ; Genes ; Genes, Immediate-Early - genetics ; Genetic aspects ; Genetic research ; Genome, Viral ; Genomes ; High-Throughput Nucleotide Sequencing ; Immune system ; Interferon ; Interferon Type I - genetics ; Medicine ; Mice ; Microbiological research ; Mortality ; Plasmids ; Reverse Transcriptase Polymerase Chain Reaction ; Virus Latency - genetics ; Virus Replication - genetics</subject><ispartof>PLoS pathogens, 2014-02, Vol.10 (2), p.e1003962-e1003962</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Dag et al 2014 Dag et al</rights><rights>2014 Dag et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Da? F, Dölken L, Holzki J, Drabig A, Weingärtner A, et al. (2014) Reversible Silencing of Cytomegalovirus Genomes by Type I Interferon Governs Virus Latency. PLoS Pathog 10(2): e1003962. doi:10.1371/journal.ppat.1003962</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-ecc5ba461e27ba3235b7eb4a050dd4e202d8b9362710dc35a1409f4fc8b8856c3</citedby><cites>FETCH-LOGICAL-c526t-ecc5ba461e27ba3235b7eb4a050dd4e202d8b9362710dc35a1409f4fc8b8856c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930589/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930589/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24586165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dağ, Franziska</creatorcontrib><creatorcontrib>Dölken, Lars</creatorcontrib><creatorcontrib>Holzki, Julia</creatorcontrib><creatorcontrib>Drabig, Anja</creatorcontrib><creatorcontrib>Weingärtner, Adrien</creatorcontrib><creatorcontrib>Schwerk, Johannes</creatorcontrib><creatorcontrib>Lienenklaus, Stefan</creatorcontrib><creatorcontrib>Conte, Ianina</creatorcontrib><creatorcontrib>Geffers, Robert</creatorcontrib><creatorcontrib>Davenport, Colin</creatorcontrib><creatorcontrib>Rand, Ulfert</creatorcontrib><creatorcontrib>Köster, Mario</creatorcontrib><creatorcontrib>Weiß, Siegfried</creatorcontrib><creatorcontrib>Adler, Barbara</creatorcontrib><creatorcontrib>Wirth, Dagmar</creatorcontrib><creatorcontrib>Messerle, Martin</creatorcontrib><creatorcontrib>Hauser, Hansjörg</creatorcontrib><creatorcontrib>Cičin-Šain, Luka</creatorcontrib><title>Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and disease. In cytomegalovirus infection, expression of the major immediate early (IE) genes is a critical checkpoint, driving the lytic replication cycle upon primary infection or reactivation from latency. While it is known that type I interferon (IFN) limits lytic CMV replication, its role in latency and reactivation has not been explored. In the model of mouse CMV infection, we show here that IFNβ blocks mouse CMV replication at the level of IE transcription in IFN-responding endothelial cells and fibroblasts. The IFN-mediated inhibition of IE genes was entirely reversible, arguing that the IFN-effect may be consistent with viral latency. Importantly, the response to IFNβ is stochastic, and MCMV IE transcription and replication were repressed only in IFN-responsive cells, while the IFN-unresponsive cells remained permissive for lytic MCMV infection. IFN blocked the viral lytic replication cycle by upregulating the nuclear domain 10 (ND10) components, PML, Sp100 and Daxx, and their knockdown by shRNA rescued viral replication in the presence of IFNβ. Finally, IFNβ prevented MCMV reactivation from endothelial cells derived from latently infected mice, validating our results in a biologically relevant setting. Therefore, our data do not only define for the first time the molecular mechanism of IFN-mediated control of CMV infection, but also indicate that the reversible inhibition of the virus lytic cycle by IFNβ is consistent with the establishment of CMV latency.</description><subject>Animals</subject><subject>Biology</subject><subject>Cell Separation</subject><subject>Cytomegalovirus</subject><subject>Cytomegalovirus - genetics</subject><subject>Cytomegalovirus Infections - genetics</subject><subject>Cytomegalovirus Infections - immunology</subject><subject>Cytomegaloviruses</subject><subject>Disease Models, Animal</subject><subject>Fluorescent Antibody Technique</subject><subject>Gene Expression Regulation, Viral - genetics</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Genes, Immediate-Early - genetics</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genome, Viral</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Immune system</subject><subject>Interferon</subject><subject>Interferon Type I - genetics</subject><subject>Medicine</subject><subject>Mice</subject><subject>Microbiological research</subject><subject>Mortality</subject><subject>Plasmids</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Virus Latency - genetics</subject><subject>Virus Replication - genetics</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkluL1DAUgIso7kX_gWjBF19mzL3ti7Asug4sCKIvvoQkPakZMsmYtAv992a23WU3L7l950tycqrqHUZbTBv8eR-nFJTfHo9q3GKEaCfIi-occ043DW3Yyyfjs-oi5z1CDFMsXldnhPFWYMHPqz8_4Q5SdtpDnZ2HYFwY6mhrM4_xAIPy8c6lKdcDhDLPtZ7rcT5CvatdGCFZSDHUQyySkOsF9WosnvlN9coqn-Ht2l9Wv799_XX9fXP742Z3fXW7MZyIcQPGcK2YwEAarSihXDegmUIc9T0Dgkjf6o4K0mDUG8oVZqizzJpWty0Xhl5WHxbv0ccs17RkiTlqWkpE1xZitxB9VHt5TO6g0iyjcvJ-IaZBqjQ640GijtuGcsOIYqU1HcLAwGrKeW9bLYrry3rapA_QGwhjUv6Z9PlOcH9lyY-kHUW87Yrg0ypI8d8EeZQHlw14rwLE6f7eDAskCC7oxwUt3wDSBRuL0ZxweUUFazkjiBaKLZRJMecE9vEyGMlTqTzkRJ5KRa6lUsLeP33IY9BDbdD_p9y9pQ</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Dağ, Franziska</creator><creator>Dölken, Lars</creator><creator>Holzki, Julia</creator><creator>Drabig, Anja</creator><creator>Weingärtner, Adrien</creator><creator>Schwerk, Johannes</creator><creator>Lienenklaus, Stefan</creator><creator>Conte, Ianina</creator><creator>Geffers, Robert</creator><creator>Davenport, Colin</creator><creator>Rand, Ulfert</creator><creator>Köster, Mario</creator><creator>Weiß, Siegfried</creator><creator>Adler, Barbara</creator><creator>Wirth, Dagmar</creator><creator>Messerle, Martin</creator><creator>Hauser, Hansjörg</creator><creator>Cičin-Šain, Luka</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140201</creationdate><title>Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency</title><author>Dağ, Franziska ; Dölken, Lars ; Holzki, Julia ; Drabig, Anja ; Weingärtner, Adrien ; Schwerk, Johannes ; Lienenklaus, Stefan ; Conte, Ianina ; Geffers, Robert ; Davenport, Colin ; Rand, Ulfert ; Köster, Mario ; Weiß, Siegfried ; Adler, Barbara ; Wirth, Dagmar ; Messerle, Martin ; Hauser, Hansjörg ; Cičin-Šain, Luka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-ecc5ba461e27ba3235b7eb4a050dd4e202d8b9362710dc35a1409f4fc8b8856c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Cell Separation</topic><topic>Cytomegalovirus</topic><topic>Cytomegalovirus - genetics</topic><topic>Cytomegalovirus Infections - genetics</topic><topic>Cytomegalovirus Infections - immunology</topic><topic>Cytomegaloviruses</topic><topic>Disease Models, Animal</topic><topic>Fluorescent Antibody Technique</topic><topic>Gene Expression Regulation, Viral - genetics</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Genes, Immediate-Early - genetics</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genome, Viral</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Immune system</topic><topic>Interferon</topic><topic>Interferon Type I - genetics</topic><topic>Medicine</topic><topic>Mice</topic><topic>Microbiological research</topic><topic>Mortality</topic><topic>Plasmids</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Virus Latency - genetics</topic><topic>Virus Replication - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dağ, Franziska</creatorcontrib><creatorcontrib>Dölken, Lars</creatorcontrib><creatorcontrib>Holzki, Julia</creatorcontrib><creatorcontrib>Drabig, Anja</creatorcontrib><creatorcontrib>Weingärtner, Adrien</creatorcontrib><creatorcontrib>Schwerk, Johannes</creatorcontrib><creatorcontrib>Lienenklaus, Stefan</creatorcontrib><creatorcontrib>Conte, Ianina</creatorcontrib><creatorcontrib>Geffers, Robert</creatorcontrib><creatorcontrib>Davenport, Colin</creatorcontrib><creatorcontrib>Rand, Ulfert</creatorcontrib><creatorcontrib>Köster, Mario</creatorcontrib><creatorcontrib>Weiß, Siegfried</creatorcontrib><creatorcontrib>Adler, Barbara</creatorcontrib><creatorcontrib>Wirth, Dagmar</creatorcontrib><creatorcontrib>Messerle, Martin</creatorcontrib><creatorcontrib>Hauser, Hansjörg</creatorcontrib><creatorcontrib>Cičin-Šain, Luka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dağ, Franziska</au><au>Dölken, Lars</au><au>Holzki, Julia</au><au>Drabig, Anja</au><au>Weingärtner, Adrien</au><au>Schwerk, Johannes</au><au>Lienenklaus, Stefan</au><au>Conte, Ianina</au><au>Geffers, Robert</au><au>Davenport, Colin</au><au>Rand, Ulfert</au><au>Köster, Mario</au><au>Weiß, Siegfried</au><au>Adler, Barbara</au><au>Wirth, Dagmar</au><au>Messerle, Martin</au><au>Hauser, Hansjörg</au><au>Cičin-Šain, Luka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>10</volume><issue>2</issue><spage>e1003962</spage><epage>e1003962</epage><pages>e1003962-e1003962</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and disease. In cytomegalovirus infection, expression of the major immediate early (IE) genes is a critical checkpoint, driving the lytic replication cycle upon primary infection or reactivation from latency. While it is known that type I interferon (IFN) limits lytic CMV replication, its role in latency and reactivation has not been explored. In the model of mouse CMV infection, we show here that IFNβ blocks mouse CMV replication at the level of IE transcription in IFN-responding endothelial cells and fibroblasts. The IFN-mediated inhibition of IE genes was entirely reversible, arguing that the IFN-effect may be consistent with viral latency. Importantly, the response to IFNβ is stochastic, and MCMV IE transcription and replication were repressed only in IFN-responsive cells, while the IFN-unresponsive cells remained permissive for lytic MCMV infection. IFN blocked the viral lytic replication cycle by upregulating the nuclear domain 10 (ND10) components, PML, Sp100 and Daxx, and their knockdown by shRNA rescued viral replication in the presence of IFNβ. Finally, IFNβ prevented MCMV reactivation from endothelial cells derived from latently infected mice, validating our results in a biologically relevant setting. Therefore, our data do not only define for the first time the molecular mechanism of IFN-mediated control of CMV infection, but also indicate that the reversible inhibition of the virus lytic cycle by IFNβ is consistent with the establishment of CMV latency.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24586165</pmid><doi>10.1371/journal.ppat.1003962</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2014-02, Vol.10 (2), p.e1003962-e1003962
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_gale_infotracmisc_A364854203
source Publicly Available Content Database; PubMed Central
subjects Animals
Biology
Cell Separation
Cytomegalovirus
Cytomegalovirus - genetics
Cytomegalovirus Infections - genetics
Cytomegalovirus Infections - immunology
Cytomegaloviruses
Disease Models, Animal
Fluorescent Antibody Technique
Gene Expression Regulation, Viral - genetics
Gene Silencing
Genes
Genes, Immediate-Early - genetics
Genetic aspects
Genetic research
Genome, Viral
Genomes
High-Throughput Nucleotide Sequencing
Immune system
Interferon
Interferon Type I - genetics
Medicine
Mice
Microbiological research
Mortality
Plasmids
Reverse Transcriptase Polymerase Chain Reaction
Virus Latency - genetics
Virus Replication - genetics
title Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T00%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20silencing%20of%20cytomegalovirus%20genomes%20by%20type%20I%20interferon%20governs%20virus%20latency&rft.jtitle=PLoS%20pathogens&rft.au=Da%C4%9F,%20Franziska&rft.date=2014-02-01&rft.volume=10&rft.issue=2&rft.spage=e1003962&rft.epage=e1003962&rft.pages=e1003962-e1003962&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1003962&rft_dat=%3Cgale_plos_%3EA364854203%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-ecc5ba461e27ba3235b7eb4a050dd4e202d8b9362710dc35a1409f4fc8b8856c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1504160621&rft_id=info:pmid/24586165&rft_galeid=A364854203&rfr_iscdi=true