Loading…

On one criterion for the figured convergence of two-dimensional continued fractions with complex elements

We establish a new criterion for the figured convergence of two-dimensional continued fractions with complex elements. This criterion represents a generalization of the theorems of simple and twin convergence sets for continued fractions.

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2010-11, Vol.170 (5), p.594-603
Main Authors: Antonova, T. M., Sus’, O. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c342x-212e76b0b4b45f715887d0100f868fa88126cbf243ade5a8fd897277082c9ebe3
cites cdi_FETCH-LOGICAL-c342x-212e76b0b4b45f715887d0100f868fa88126cbf243ade5a8fd897277082c9ebe3
container_end_page 603
container_issue 5
container_start_page 594
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 170
creator Antonova, T. M.
Sus’, O. M.
description We establish a new criterion for the figured convergence of two-dimensional continued fractions with complex elements. This criterion represents a generalization of the theorems of simple and twin convergence sets for continued fractions.
doi_str_mv 10.1007/s10958-010-0104-x
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A373476676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A373476676</galeid><sourcerecordid>A373476676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342x-212e76b0b4b45f715887d0100f868fa88126cbf243ade5a8fd897277082c9ebe3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1poWmaH9CboKcelOrDtrTHEPoRCATa5CxkeeQo2FKQtI377zNme1lYihgkZp530LzTNJ84u-SMqa-Fs12nKeNsi5aub5oz3ilJtdp1b_HNlKBSqvZ986GUJ4aaXsuzJtxFkiIQl0OFHFIkPmVSH4H4MO0zjMSl-AfyBNEBSZ7Ul0THsEAsCNt5K9cQ9wj6bF3FZCEvoT5iYXmeYSUwA9K1fGzeeTsXuPh3nzcP37_dX_-kt3c_bq6vbqmTrVip4AJUP7ChHdrOK95prUYciXnda2-15qJ3gxettCN0VvtR75RQimnhdjCAPG8-H_pOdgYTok8VP7aE4syVVLJVfa96pOgJCqeEbGc0xAdMH_GXJ3g8IyzBnRR8ORJsPsFaJ7svxdz8_nXM8gPrciolgzfPOSw2_zWcmW295rBegz5s0ZoVNeKgKcjGCbJ5SvuMGyn_Eb0CyCmnyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On one criterion for the figured convergence of two-dimensional continued fractions with complex elements</title><source>Springer Nature</source><creator>Antonova, T. M. ; Sus’, O. M.</creator><creatorcontrib>Antonova, T. M. ; Sus’, O. M.</creatorcontrib><description>We establish a new criterion for the figured convergence of two-dimensional continued fractions with complex elements. This criterion represents a generalization of the theorems of simple and twin convergence sets for continued fractions.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-010-0104-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2010-11, Vol.170 (5), p.594-603</ispartof><rights>Springer Science+Business Media, Inc. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342x-212e76b0b4b45f715887d0100f868fa88126cbf243ade5a8fd897277082c9ebe3</citedby><cites>FETCH-LOGICAL-c342x-212e76b0b4b45f715887d0100f868fa88126cbf243ade5a8fd897277082c9ebe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Antonova, T. M.</creatorcontrib><creatorcontrib>Sus’, O. M.</creatorcontrib><title>On one criterion for the figured convergence of two-dimensional continued fractions with complex elements</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We establish a new criterion for the figured convergence of two-dimensional continued fractions with complex elements. This criterion represents a generalization of the theorems of simple and twin convergence sets for continued fractions.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhk1poWmaH9CboKcelOrDtrTHEPoRCATa5CxkeeQo2FKQtI377zNme1lYihgkZp530LzTNJ84u-SMqa-Fs12nKeNsi5aub5oz3ilJtdp1b_HNlKBSqvZ986GUJ4aaXsuzJtxFkiIQl0OFHFIkPmVSH4H4MO0zjMSl-AfyBNEBSZ7Ul0THsEAsCNt5K9cQ9wj6bF3FZCEvoT5iYXmeYSUwA9K1fGzeeTsXuPh3nzcP37_dX_-kt3c_bq6vbqmTrVip4AJUP7ChHdrOK95prUYciXnda2-15qJ3gxettCN0VvtR75RQimnhdjCAPG8-H_pOdgYTok8VP7aE4syVVLJVfa96pOgJCqeEbGc0xAdMH_GXJ3g8IyzBnRR8ORJsPsFaJ7svxdz8_nXM8gPrciolgzfPOSw2_zWcmW295rBegz5s0ZoVNeKgKcjGCbJ5SvuMGyn_Eb0CyCmnyQ</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Antonova, T. M.</creator><creator>Sus’, O. M.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20101101</creationdate><title>On one criterion for the figured convergence of two-dimensional continued fractions with complex elements</title><author>Antonova, T. M. ; Sus’, O. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342x-212e76b0b4b45f715887d0100f868fa88126cbf243ade5a8fd897277082c9ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonova, T. M.</creatorcontrib><creatorcontrib>Sus’, O. M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonova, T. M.</au><au>Sus’, O. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On one criterion for the figured convergence of two-dimensional continued fractions with complex elements</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>170</volume><issue>5</issue><spage>594</spage><epage>603</epage><pages>594-603</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We establish a new criterion for the figured convergence of two-dimensional continued fractions with complex elements. This criterion represents a generalization of the theorems of simple and twin convergence sets for continued fractions.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10958-010-0104-x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2010-11, Vol.170 (5), p.594-603
issn 1072-3374
1573-8795
language eng
recordid cdi_gale_infotracmisc_A373476676
source Springer Nature
subjects Mathematics
Mathematics and Statistics
title On one criterion for the figured convergence of two-dimensional continued fractions with complex elements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20one%20criterion%20for%20the%20figured%20convergence%20of%20two-dimensional%20continued%20fractions%20with%20complex%20elements&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Antonova,%20T.%20M.&rft.date=2010-11-01&rft.volume=170&rft.issue=5&rft.spage=594&rft.epage=603&rft.pages=594-603&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-010-0104-x&rft_dat=%3Cgale_cross%3EA373476676%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342x-212e76b0b4b45f715887d0100f868fa88126cbf243ade5a8fd897277082c9ebe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A373476676&rfr_iscdi=true