Loading…
Role of bone marrow-derived stem cells in polyps development in mice with [Apc.sup.Min/+] mutation
We explored the hypothesis that an altered microenvironment (intestinal adenomatous polyp) could modify the differentiation program of bone marrow-derived stem cells (BMSCs), involving them in colon carcinogenesis. Sublethally irradiated 8-week-old female [Apc.sup.Min/+] mice were transplanted with...
Saved in:
Published in: | Stem cells international 2015-01 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We explored the hypothesis that an altered microenvironment (intestinal adenomatous polyp) could modify the differentiation program of bone marrow-derived stem cells (BMSCs), involving them in colon carcinogenesis. Sublethally irradiated 8-week-old female [Apc.sup.Min/+] mice were transplanted with bone marrow (BM) cells obtained from either male age-matched [Apc.sup.Min/+] (Apc-Tx-Apc) or wild type (WT) (WT-Tx-Apc) mice. At 4 and 7 weeks after transplantation, BM-derived colonocytes were recognized by colocalization of Y-chromosome and Cdx2 protein (specific colonocyte marker). Polyp number, volume, and grade of dysplasia were not influenced by irradiation/transplantation procedures since they were similar in both untreated female [Apc.sup.Min/+] and Apc-Tx-Apc mice. At 4 and 7 weeks after transplantation, a progressive significant reduction of polyp number and volume was observed in WT-Tx-Apc mice. Moreover, the number of WT-Tx-Apc mice with a high-grade dysplastic polyps significantly decreased as compared to Apc-Tx-Apc mice. Finally, at 4 and 7 weeks after transplantation, WT-Tx-Apc mice showed a progressive significant increase of Y+/Cdx2+ cells in "normal" mucosa, whereas, in the adenomatous tissue, Y+/Cdx2+ cells remained substantially unvaried. Our findings demonstrate that WT BMSCs do not participate in polyp development but rather inhibit their growth. The substitution of genotypically altered colonocytes with Y+/Cdx2+ cells probably contributes to this process. |
---|---|
ISSN: | 1687-9678 |
DOI: | 10.1155/2015/354193 |