Loading…

O.sub.2 Level Controls Hematopoietic Circulating Progenitor Cells Differentiation into Endothelial or Smooth Muscle Cells

Recent studies showed that progenitor cells could differentiate into mature vascular cells. The main physiological factors implicated in cell differentiation are specific growth factors. We hypothesized that simply by varying the oxygen content, progenitor cells can be differentiated either in matur...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2009-05, Vol.4 (5), p.e5514
Main Authors: Berthelemy, Nicolas, Kerdjoudj, Halima, Schaaf, Pierre, Prin-Mathieu, Christine, Lacolley, Patrick, Stoltz, Jean-François, Voegel, Jean-Claude, Menu, Patrick
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent studies showed that progenitor cells could differentiate into mature vascular cells. The main physiological factors implicated in cell differentiation are specific growth factors. We hypothesized that simply by varying the oxygen content, progenitor cells can be differentiated either in mature endothelial cells (ECs) or contractile smooth muscle cells (SMCs) while keeping exactly the same culture medium. Mononuclear cells were isolated by density gradient were cultivated under hypoxic (5% O.sub.2) or normoxic (21% O.sub.2) environment. Differentiated cells characterization was performed by confocal microscopy examination and flow cytometry analyses. The phenotype stability over a longer time period was also performed. The morphological examination of the confluent obtained cells after several weeks (between 2 and 4 weeks) showed two distinct morphologies: cobblestone shape in normoxia and a spindle like shape in hypoxia. The cell characterization showed that cobblestone cells were positive to ECs markers while spindle like shape cells were positive to contractile SMCs markers. Moreover, after several further amplification (until 3.sup.rd passage) in hypoxic or normoxic conditions of the previously differentiated SMC, immunofluorescence studies showed that more than 80% cells continued to express SMCs markers whatever the cell environmental culture conditions with a higher contractile markers expression compared to control (aorta SMCs) signature of phenotype stability. We demonstrate in this paper that in vitro culture of peripheral blood mononuclear cells with specific angiogenic growth factors under hypoxic conditions leads to SMCs differentiation into a contractile phenotype, signature of their physiological state. Moreover after amplification, the differentiated SMC did not reverse and keep their contractile phenotype after the 3.sup.rd passage performed under hypoxic and normoxic conditions. These aspects are of the highest importance for tissue engineering strategies. These results highlight also the determinant role of the tissue environment in the differentiation process of vascular progenitor cells.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0005514