Loading…
A Large Scale Laboratory Cage Trial of Aedes Densonucleosis Virus (AeDNV)
Aedes aegypti (L.) (Diptera: Culicidae) the primary vector of dengue viruses (DENV1-4), oviposit in and around human dwellings, including sites difficult to locate, making control of this mosquito challenging. We explored the efficacy and sustainability of Aedes Densonucleosis Virus (AeDNV) as a bio...
Saved in:
Published in: | Journal of medical entomology 2010-05, Vol.47 (3), p.392-399 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aedes aegypti (L.) (Diptera: Culicidae) the primary vector of dengue viruses (DENV1-4), oviposit in and around human dwellings, including sites difficult to locate, making control of this mosquito challenging. We explored the efficacy and sustainability of Aedes Densonucleosis Virus (AeDNV) as a biocontrol agent for Ae. aegypti in and among oviposition sites in large laboratory cages (>92 m[sup.3]) as a prelude to field trials. Select cages were seeded with AeDNV in a single oviposition site (OPS) with unseeded OPSs established at varied distances. Quantitative real-time polymerase chain reaction was used to track dispersal and accumulation of AeDNV among OPSs. All eggs were collected weekly from each cage and counted. We asked: (1) Is AeDNV dispersed over varying distances and can it accumulate and persist in novel OPSs? (2) Are egg densities reduced in AeDNV treated populations? AeDNV was dispersed to and sustained in novel OPSs. Virus accumulation in OPSs was positively correlated with egg densities and proximity to the initial infection source affected the timing of dispersal and maintenance of viral titers. AeDNV did not significantly reduce Ae. aegypti egg densities. The current study documents that adult female Ae. aegypti oviposition behavior leads to successful viral dispersal from treated to novel containers in large-scale cages; however, the AeDNV titers reached were not sufficient to reduce egg densities. Keywords: Aedes aegypti , Aedes densonucleosis virus, biological control, virus accumulation and dispersal, female oviposition behavior |
---|---|
ISSN: | 0022-2585 1938-2928 |
DOI: | 10.1093/jmedent/47.3.392 |