Loading…

miR-1-5p targets TGF-[beta]R1 and is suppressed in the hypertrophying hearts of rats with pulmonary arterial hypertension

The microRNA miR-1 is an important regulator of muscle phenotype including cardiac muscle. Down-regulation of miR-1 has been shown to occur in left ventricular hypertrophy but its contribution to right ventricular hypertrophy in pulmonary arterial hypertension are not known. Previous studies have su...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-02, Vol.15 (2), p.e0229409
Main Authors: Connolly, Martin, Garfield, Benjamin E, Crosby, Alexi, Morrell, Nick W, Wort, Stephen J, Kemp, Paul R, Martelli, Fabio
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The microRNA miR-1 is an important regulator of muscle phenotype including cardiac muscle. Down-regulation of miR-1 has been shown to occur in left ventricular hypertrophy but its contribution to right ventricular hypertrophy in pulmonary arterial hypertension are not known. Previous studies have suggested that miR-1 may suppress transforming growth factor-beta (TGF-[beta]) signalling, an important pro-hypertrophic pathway but only indirect mechanisms of regulation have been identified. We identified the TGF-[beta] type 1 receptor (TGF-[beta]R1) as a putative miR-1 target. We therefore hypothesized that miR-1 and TGF-[beta]R1 expression would be inversely correlated in hypertrophying right ventricle of rats with pulmonary arterial hypertension and that miR-1 would inhibit TGF-[beta] signalling by targeting TGF-[beta]R1 expression. Quantification of miR-1 and TGF-[beta]R1 in rats treated with monocrotaline to induce pulmonary arterial hypertension showed appropriate changes in miR-1 and TGF-[beta]R1 expression in the hypertrophying right ventricle. A miR-1-mimic reduced enhanced green fluorescent protein expression from a reporter vector containing the TGF-[beta]R1 3'- untranslated region and knocked down endogenous TGF-[beta]R1. Lastly, miR-1 reduced TGF-[beta] activation of a (mothers against decapentaplegic homolog) SMAD2/3-dependent reporter. Taken together, these data suggest that miR-1 targets TGF-[beta]R1 and reduces TGF-[beta] signalling, so a reduction in miR-1 expression may increase TGF-[beta] signalling and contribute to cardiac hypertrophy.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0229409