Loading…

Estrogen attenuates TGF-[beta]1-induced EMT in intrauterine adhesion by activating Wnt/[beta]-catenin signaling pathway

Although estrogen has crucial functions for endometrium growth, the specific dose and underlying molecular mechanism in intrauterine adhesion (IUA) remain unclear. In this study, we aimed to investigate the effects of estrogen on epithelialmesenchymal transition (EMT) in normal and fibrotic endometr...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian journal of medical and biological research 2020-08, Vol.53 (8)
Main Authors: Cao, Jia, Liu, Dan, Zhao, Shiyun, Yuan, Liwei, Huang, Yani, Ma, Jingwen, Yang, Zhijuan, Shi, Bin, Wang, Libin, Wei, Jun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although estrogen has crucial functions for endometrium growth, the specific dose and underlying molecular mechanism in intrauterine adhesion (IUA) remain unclear. In this study, we aimed to investigate the effects of estrogen on epithelialmesenchymal transition (EMT) in normal and fibrotic endometrium, and the role of estrogen and Wnt/[beta]-catenin signaling in the formation of endometrial fibrosis. CCK-8 and immunofluorescence assay were performed to access the proliferation of different concentrations of estrogen on normal human endometrial epithelial cells (hEECs). qRT-PCR and western blot assay were utilized to explore the effect of estrogen on EMT in normal and fibrotic endometrium, and main components of Wnt/[beta]-catenin signaling pathway in vitro. Hematoxylin and eosin and Masson staining were used to evaluate the effect of estrogen on endometrial morphology and fibrosis in vivo. Our results indicated that the proliferation of normal hEECs was inhibited by estrogen at a concentration of 30 nM accompanied by upregulation of mesenchymal markers and downregulation of epithelial markers. Interestingly, in the model of transforming growth factor [beta]1 (TGF-[beta]1)-induced endometrial fibrosis, the same concentration of estrogen inhibited the process of EMT, which might be partially mediated by regulation of the Wnt/[beta]-catenin pathway. In addition, relatively high doses of estrogen efficiently increased the number of endometrial glands and reduced the area of fibrosis as determined by the reduction of EMT in IUA animal models. Taken together, our results demonstrated that an appropriate concentration of estrogen may prevent the occurrence and development of IUA by inhibiting the TGF-[beta]1-induced EMT and activating the Wnt/[beta]-catenin pathway. Key words: Intrauterine adhesion; Estrogen; Epithelial-mesenchymal transition; Wnt/[beta]-catenin pathway
ISSN:0100-879X
DOI:10.1590/1414-431X20209794