Loading…
Measurements of PM.sub.2.5 with PurpleAir under atmospheric conditions
The PurpleAir PA-II unit is a low-cost sensor for monitoring changes in the concentrations of particulate matter (PM) of various sizes. There are currently more than 10 000 PA-II units in use worldwide; some of the units are located in areas where no other reference air monitoring system is present....
Saved in:
Published in: | Atmospheric measurement techniques 2020-10, Vol.13 (10), p.5441 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The PurpleAir PA-II unit is a low-cost sensor for monitoring changes in the concentrations of particulate matter (PM) of various sizes. There are currently more than 10 000 PA-II units in use worldwide; some of the units are located in areas where no other reference air monitoring system is present. Previous studies have examined the performance of these PA-II units (or the sensors within them) in comparison to a co-located reference air monitoring system. However, because PA-II units are installed by PurpleAir customers, most of the PA-II units are not co-located with a reference air monitoring system and, in many cases, are not near one. This study aims to examine how each PA-II unit performs under atmospheric conditions when exposed to a variety of pollutants and PM.sub.2.5 concentrations (PM with an aerodynamic diameter smaller than 2.5 µm), when at a distance from the reference sensor. We examine how PA-II units perform in comparison to other PA-II units and Environmental Protection Agency (EPA) Air Quality Monitoring Stations (AQMSs) that are not co-located with them. For this study, we selected four different regions, each containing multiple PA-II units (minimum of seven per region). In addition, each region needed to have at least one AQMS unit that was co-located with at least one PA-II unit, all units needed to be at a distance of up to 5 km from an AQMS unit and up to 10 km between each other. Correction of PM.sub.2.5 values of the co-located PA-II units was implemented by multivariate linear regression (MLR), taking into account changes of temperature and relative humidity. The fit coefficients, received from the MLR, were then used to correct the PM.sub.2.5 values in all the remaining PA-II units in the region. Hourly PM.sub.2.5 measurements from each PA-II unit were compared to those from the AQMSs and other PA-II units in its region. The correction of the PM.sub.2.5 values improved the R-squared value (R.sup.2 ), root-mean-square error (RMSE), and mean absolute error (MAE) and slope values between all units. In most cases, the AQMSs and the PA-II units were found to be in good agreement (75 % of the comparisons had a R.sup.2 >0.8); they measured similar values and followed similar trends; that is, when the PM.sub.2.5 values measured by the AQMSs increased or decreased, so did those of the PA-II units. In some high-pollution events, the corrected PA-II had slightly higher PM.sub.2.5 values compared to those measured by the AQMS. Distance be |
---|---|
ISSN: | 1867-1381 1867-8548 |