Loading…

Evaluation of odonto/osteogenic differentiation potential from different regions derived dental tissue stem cells and effect of 17[beta]-estradiol on efficiency

Background The dentin is a tissue, which is formed by odontoblasts at the pulp interface of the teeth that supports the enamel. Odontoblasts, the cranial neural crest cells are derived from ectodermal mesenchymal stem cells (MSCs) and are long and polarized cells. They are present at the outer surfa...

Full description

Saved in:
Bibliographic Details
Published in:BMC oral health 2021-01, Vol.21 (1)
Main Authors: Son, Young-Bum, Kang, Young-Hoon, Lee, Hyeon-Jeong, Jang, Si-Jung, Bha, Lee, Sung-Lim, Jeon, Byeong-Gyun, Park, Bong-Wook, Rho, Gyu-Jin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background The dentin is a tissue, which is formed by odontoblasts at the pulp interface of the teeth that supports the enamel. Odontoblasts, the cranial neural crest cells are derived from ectodermal mesenchymal stem cells (MSCs) and are long and polarized cells. They are present at the outer surface of dentin and play a prominent role about dentin formation. Recently, attention has been focused on induction of odontoblast using various type of MSCs and effects of the 17ss-estradiol supplementation. In this study, we establish an efficient odonto/osteoblast differentiation protocol using 17ss-estradiol supplementation while comparing the odonto/osteoblast ability of various dental MSCs. Methods Same donor derived four types of dental MSCs namely dental pulp stem cells (DPSCs), stem cells from apical papilla (SCAP), dental follicle stem cells (DFSCs), and periodontal ligament stem cells (PDLSCs) were evaluated for their stemness characteristics and potency towards odonto/osteoblast (Induced odonto/osteoblast) differentiation. Then 17ss-estradiol supplementation of 0 and 10 [micro]M was applied to the odonto/osteoblast differentiation media for 14 days respectively. Furthermore, mRNA and protein levels of odonto/osteoblast markers were evaluated. Results All of the experimental groups displayed stemness characteristics by showing adipocyte and chondrocyte differentiation abilities, expression for cell surface markers and cell proliferation capacity without any significant differences. Moreover, all dental derived MSCs were shown to have odonto/osteoblast differentiation ability when cultured under specific conditions and also showed positive expression for odontoblast markers at both mRNA and protein level. Among all, DPSCs revealed the higher differentiation potential than other dental MSCs. Furthermore, odonto/osteoblast differentiation potential was enhanced by supplementing the differentiation media with 17ss-estradiol (E2). Conclusions Thus, DPSCs possess higher odonto/osteogenic potential than the SCAPs, DFSCs, PDLSCs and their differentiation capacity can by further enhanced under E2 supplementation. Keywords: Odonto/osteoblast, Mesenchymal stem cells, Dental tissue, Dental pulp stem cells, 17ss-estradiol
ISSN:1472-6831
1472-6831
DOI:10.1186/s12903-020-01366-2