Loading…

Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain

The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. Prospective, multicenter, observational study of critically il...

Full description

Saved in:
Bibliographic Details
Published in:Critical care (London, England) England), 2021-02, Vol.25 (1), p.63-63, Article 63
Main Authors: Rodríguez, Alejandro, Ruiz-Botella, Manuel, Martín-Loeches, Ignacio, Jimenez Herrera, María, Solé-Violan, Jordi, Gómez, Josep, Bodí, María, Trefler, Sandra, Papiol, Elisabeth, Díaz, Emili, Suberviola, Borja, Vallverdu, Montserrat, Mayor-Vázquez, Eric, Albaya Moreno, Antonio, Canabal Berlanga, Alfonso, Sánchez, Miguel, Del Valle Ortíz, María, Ballesteros, Juan Carlos, Martín Iglesias, Lorena, Marín-Corral, Judith, López Ramos, Esther, Hidalgo Valverde, Virginia, Vidaur Tello, Loreto Vidaur, Sancho Chinesta, Susana, Gonzáles de Molina, Francisco Javier, Herrero García, Sandra, Sena Pérez, Carmen Carolina, Pozo Laderas, Juan Carlos, Rodríguez García, Raquel, Estella, Angel, Ferrer, Ricard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3
cites cdi_FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3
container_end_page 63
container_issue 1
container_start_page 63
container_title Critical care (London, England)
container_volume 25
creator Rodríguez, Alejandro
Ruiz-Botella, Manuel
Martín-Loeches, Ignacio
Jimenez Herrera, María
Solé-Violan, Jordi
Gómez, Josep
Bodí, María
Trefler, Sandra
Papiol, Elisabeth
Díaz, Emili
Suberviola, Borja
Vallverdu, Montserrat
Mayor-Vázquez, Eric
Albaya Moreno, Antonio
Canabal Berlanga, Alfonso
Sánchez, Miguel
Del Valle Ortíz, María
Ballesteros, Juan Carlos
Martín Iglesias, Lorena
Marín-Corral, Judith
López Ramos, Esther
Hidalgo Valverde, Virginia
Vidaur Tello, Loreto Vidaur
Sancho Chinesta, Susana
Gonzáles de Molina, Francisco Javier
Herrero García, Sandra
Sena Pérez, Carmen Carolina
Pozo Laderas, Juan Carlos
Rodríguez García, Raquel
Estella, Angel
Ferrer, Ricard
description The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient's factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves. The database included a total of 2022 patients (mean age 64 [IQR 5-71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10-17]) and SOFA score (5 [IQR 3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age ( 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications. The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a "one-size-fits-all" model in practice.
doi_str_mv 10.1186/s13054-021-03487-8
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_gale_infotracmisc_A653604646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A653604646</galeid><doaj_id>oai_doaj_org_article_39ae7bf1a6444a9c9d3bf344819cf233</doaj_id><sourcerecordid>A653604646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3</originalsourceid><addsrcrecordid>eNpdkstu1DAUhiMEomXgBVigSGzYBHyLY2-QqimXkSp1wUXsrBPHnvGQiYPtDMpT8Yp4mlK1rGwdf-ezj_wXxUuM3mIs-LuIKapZhQiuEGWiqcSj4hwzziuO5I_HeU85q0RN67PiWYx7hHAjOH1anFFaCyExOy_-XJqx97MbtuU0xGk04eii6UrdTzGZcKrDAP0cXSyTL7tcOpp86ganoS_HnRl8mkcTM9aVwcWfpQWdfMiFGL12kLLtt0u78uBDgt6lecHcUBJESKmDSydXP5euz0ZIzgwpLj3r6--bywrLE_1lBDc8L55Y6KN5cbuuim8fP3xdf66urj9t1hdXla4JS1UnOkYktNQCcEJBtB21lhtCkSAWGkkQbaS0RJumxlJ2VmMtGesozi1tS1fFZvF2HvZqDO4AYVYenLop-LBVEPK7e6OoBNO0FgNnjIHUsqOtpYwJLLUllGbX-8U1Tu3BdDqPF6B_IH14Mrid2vqjaoSgIv_fqnhzKwj-12RiUgcXtel7GIyfoiJMIowl501GX_-H7v0U8g8ulMSEy3vUFvIAbrA-36tPUnXBa8oR44xniiyUDj7GYOzdkzFSpwSqJYEqJ1DdJFCJ3PTq_rB3Lf8iR_8CpljZ4Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490912697</pqid></control><display><type>article</type><title>Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain</title><source>Publicly Available Content Database</source><source>PMC (PubMed Central)</source><source>Coronavirus Research Database</source><creator>Rodríguez, Alejandro ; Ruiz-Botella, Manuel ; Martín-Loeches, Ignacio ; Jimenez Herrera, María ; Solé-Violan, Jordi ; Gómez, Josep ; Bodí, María ; Trefler, Sandra ; Papiol, Elisabeth ; Díaz, Emili ; Suberviola, Borja ; Vallverdu, Montserrat ; Mayor-Vázquez, Eric ; Albaya Moreno, Antonio ; Canabal Berlanga, Alfonso ; Sánchez, Miguel ; Del Valle Ortíz, María ; Ballesteros, Juan Carlos ; Martín Iglesias, Lorena ; Marín-Corral, Judith ; López Ramos, Esther ; Hidalgo Valverde, Virginia ; Vidaur Tello, Loreto Vidaur ; Sancho Chinesta, Susana ; Gonzáles de Molina, Francisco Javier ; Herrero García, Sandra ; Sena Pérez, Carmen Carolina ; Pozo Laderas, Juan Carlos ; Rodríguez García, Raquel ; Estella, Angel ; Ferrer, Ricard</creator><creatorcontrib>Rodríguez, Alejandro ; Ruiz-Botella, Manuel ; Martín-Loeches, Ignacio ; Jimenez Herrera, María ; Solé-Violan, Jordi ; Gómez, Josep ; Bodí, María ; Trefler, Sandra ; Papiol, Elisabeth ; Díaz, Emili ; Suberviola, Borja ; Vallverdu, Montserrat ; Mayor-Vázquez, Eric ; Albaya Moreno, Antonio ; Canabal Berlanga, Alfonso ; Sánchez, Miguel ; Del Valle Ortíz, María ; Ballesteros, Juan Carlos ; Martín Iglesias, Lorena ; Marín-Corral, Judith ; López Ramos, Esther ; Hidalgo Valverde, Virginia ; Vidaur Tello, Loreto Vidaur ; Sancho Chinesta, Susana ; Gonzáles de Molina, Francisco Javier ; Herrero García, Sandra ; Sena Pérez, Carmen Carolina ; Pozo Laderas, Juan Carlos ; Rodríguez García, Raquel ; Estella, Angel ; Ferrer, Ricard ; COVID-19 SEMICYUC Working Group ; on behalf of COVID-19 SEMICYUC Working Group</creatorcontrib><description>The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient's factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves. The database included a total of 2022 patients (mean age 64 [IQR 5-71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10-17]) and SOFA score (5 [IQR 3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (&lt; 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (&gt; 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications. The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a "one-size-fits-all" model in practice.</description><identifier>ISSN: 1364-8535</identifier><identifier>EISSN: 1466-609X</identifier><identifier>EISSN: 1364-8535</identifier><identifier>EISSN: 1366-609X</identifier><identifier>DOI: 10.1186/s13054-021-03487-8</identifier><identifier>PMID: 33588914</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Accuracy ; Aged ; Cluster Analysis ; Clustering ; Coronaviruses ; COVID-19 ; COVID-19 - mortality ; COVID-19 - therapy ; Critical care ; Critical Illness ; Critically ill ; Female ; Genotype &amp; phenotype ; Hospitals ; Humans ; Infections ; Intensive care ; Laboratories ; Machine learning ; Male ; Medical prognosis ; Medical research ; Medicine, Experimental ; Methods ; Middle Aged ; Mortality ; Patients ; Phenotype ; Phenotypes ; Population ; Principal components analysis ; Prognosis ; Regression analysis ; Respiratory failure ; Risk Assessment ; Risk Factors ; Severe acute respiratory syndrome coronavirus 2 ; Severe SARS-CoV-2 infection ; Software ; Spain - epidemiology ; Statistics ; Variables</subject><ispartof>Critical care (London, England), 2021-02, Vol.25 (1), p.63-63, Article 63</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3</citedby><cites>FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3</cites><orcidid>0000-0001-8828-5984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7883885/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2490912697?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,38493,43871,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33588914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez, Alejandro</creatorcontrib><creatorcontrib>Ruiz-Botella, Manuel</creatorcontrib><creatorcontrib>Martín-Loeches, Ignacio</creatorcontrib><creatorcontrib>Jimenez Herrera, María</creatorcontrib><creatorcontrib>Solé-Violan, Jordi</creatorcontrib><creatorcontrib>Gómez, Josep</creatorcontrib><creatorcontrib>Bodí, María</creatorcontrib><creatorcontrib>Trefler, Sandra</creatorcontrib><creatorcontrib>Papiol, Elisabeth</creatorcontrib><creatorcontrib>Díaz, Emili</creatorcontrib><creatorcontrib>Suberviola, Borja</creatorcontrib><creatorcontrib>Vallverdu, Montserrat</creatorcontrib><creatorcontrib>Mayor-Vázquez, Eric</creatorcontrib><creatorcontrib>Albaya Moreno, Antonio</creatorcontrib><creatorcontrib>Canabal Berlanga, Alfonso</creatorcontrib><creatorcontrib>Sánchez, Miguel</creatorcontrib><creatorcontrib>Del Valle Ortíz, María</creatorcontrib><creatorcontrib>Ballesteros, Juan Carlos</creatorcontrib><creatorcontrib>Martín Iglesias, Lorena</creatorcontrib><creatorcontrib>Marín-Corral, Judith</creatorcontrib><creatorcontrib>López Ramos, Esther</creatorcontrib><creatorcontrib>Hidalgo Valverde, Virginia</creatorcontrib><creatorcontrib>Vidaur Tello, Loreto Vidaur</creatorcontrib><creatorcontrib>Sancho Chinesta, Susana</creatorcontrib><creatorcontrib>Gonzáles de Molina, Francisco Javier</creatorcontrib><creatorcontrib>Herrero García, Sandra</creatorcontrib><creatorcontrib>Sena Pérez, Carmen Carolina</creatorcontrib><creatorcontrib>Pozo Laderas, Juan Carlos</creatorcontrib><creatorcontrib>Rodríguez García, Raquel</creatorcontrib><creatorcontrib>Estella, Angel</creatorcontrib><creatorcontrib>Ferrer, Ricard</creatorcontrib><creatorcontrib>COVID-19 SEMICYUC Working Group</creatorcontrib><creatorcontrib>on behalf of COVID-19 SEMICYUC Working Group</creatorcontrib><title>Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain</title><title>Critical care (London, England)</title><addtitle>Crit Care</addtitle><description>The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient's factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves. The database included a total of 2022 patients (mean age 64 [IQR 5-71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10-17]) and SOFA score (5 [IQR 3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (&lt; 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (&gt; 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications. The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a "one-size-fits-all" model in practice.</description><subject>Accuracy</subject><subject>Aged</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - mortality</subject><subject>COVID-19 - therapy</subject><subject>Critical care</subject><subject>Critical Illness</subject><subject>Critically ill</subject><subject>Female</subject><subject>Genotype &amp; phenotype</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Infections</subject><subject>Intensive care</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Mortality</subject><subject>Patients</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Population</subject><subject>Principal components analysis</subject><subject>Prognosis</subject><subject>Regression analysis</subject><subject>Respiratory failure</subject><subject>Risk Assessment</subject><subject>Risk Factors</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Severe SARS-CoV-2 infection</subject><subject>Software</subject><subject>Spain - epidemiology</subject><subject>Statistics</subject><subject>Variables</subject><issn>1364-8535</issn><issn>1466-609X</issn><issn>1364-8535</issn><issn>1366-609X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkstu1DAUhiMEomXgBVigSGzYBHyLY2-QqimXkSp1wUXsrBPHnvGQiYPtDMpT8Yp4mlK1rGwdf-ezj_wXxUuM3mIs-LuIKapZhQiuEGWiqcSj4hwzziuO5I_HeU85q0RN67PiWYx7hHAjOH1anFFaCyExOy_-XJqx97MbtuU0xGk04eii6UrdTzGZcKrDAP0cXSyTL7tcOpp86ganoS_HnRl8mkcTM9aVwcWfpQWdfMiFGL12kLLtt0u78uBDgt6lecHcUBJESKmDSydXP5euz0ZIzgwpLj3r6--bywrLE_1lBDc8L55Y6KN5cbuuim8fP3xdf66urj9t1hdXla4JS1UnOkYktNQCcEJBtB21lhtCkSAWGkkQbaS0RJumxlJ2VmMtGesozi1tS1fFZvF2HvZqDO4AYVYenLop-LBVEPK7e6OoBNO0FgNnjIHUsqOtpYwJLLUllGbX-8U1Tu3BdDqPF6B_IH14Mrid2vqjaoSgIv_fqnhzKwj-12RiUgcXtel7GIyfoiJMIowl501GX_-H7v0U8g8ulMSEy3vUFvIAbrA-36tPUnXBa8oR44xniiyUDj7GYOzdkzFSpwSqJYEqJ1DdJFCJ3PTq_rB3Lf8iR_8CpljZ4Q</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Rodríguez, Alejandro</creator><creator>Ruiz-Botella, Manuel</creator><creator>Martín-Loeches, Ignacio</creator><creator>Jimenez Herrera, María</creator><creator>Solé-Violan, Jordi</creator><creator>Gómez, Josep</creator><creator>Bodí, María</creator><creator>Trefler, Sandra</creator><creator>Papiol, Elisabeth</creator><creator>Díaz, Emili</creator><creator>Suberviola, Borja</creator><creator>Vallverdu, Montserrat</creator><creator>Mayor-Vázquez, Eric</creator><creator>Albaya Moreno, Antonio</creator><creator>Canabal Berlanga, Alfonso</creator><creator>Sánchez, Miguel</creator><creator>Del Valle Ortíz, María</creator><creator>Ballesteros, Juan Carlos</creator><creator>Martín Iglesias, Lorena</creator><creator>Marín-Corral, Judith</creator><creator>López Ramos, Esther</creator><creator>Hidalgo Valverde, Virginia</creator><creator>Vidaur Tello, Loreto Vidaur</creator><creator>Sancho Chinesta, Susana</creator><creator>Gonzáles de Molina, Francisco Javier</creator><creator>Herrero García, Sandra</creator><creator>Sena Pérez, Carmen Carolina</creator><creator>Pozo Laderas, Juan Carlos</creator><creator>Rodríguez García, Raquel</creator><creator>Estella, Angel</creator><creator>Ferrer, Ricard</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8828-5984</orcidid></search><sort><creationdate>20210215</creationdate><title>Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain</title><author>Rodríguez, Alejandro ; Ruiz-Botella, Manuel ; Martín-Loeches, Ignacio ; Jimenez Herrera, María ; Solé-Violan, Jordi ; Gómez, Josep ; Bodí, María ; Trefler, Sandra ; Papiol, Elisabeth ; Díaz, Emili ; Suberviola, Borja ; Vallverdu, Montserrat ; Mayor-Vázquez, Eric ; Albaya Moreno, Antonio ; Canabal Berlanga, Alfonso ; Sánchez, Miguel ; Del Valle Ortíz, María ; Ballesteros, Juan Carlos ; Martín Iglesias, Lorena ; Marín-Corral, Judith ; López Ramos, Esther ; Hidalgo Valverde, Virginia ; Vidaur Tello, Loreto Vidaur ; Sancho Chinesta, Susana ; Gonzáles de Molina, Francisco Javier ; Herrero García, Sandra ; Sena Pérez, Carmen Carolina ; Pozo Laderas, Juan Carlos ; Rodríguez García, Raquel ; Estella, Angel ; Ferrer, Ricard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Aged</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - mortality</topic><topic>COVID-19 - therapy</topic><topic>Critical care</topic><topic>Critical Illness</topic><topic>Critically ill</topic><topic>Female</topic><topic>Genotype &amp; phenotype</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Infections</topic><topic>Intensive care</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Mortality</topic><topic>Patients</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Population</topic><topic>Principal components analysis</topic><topic>Prognosis</topic><topic>Regression analysis</topic><topic>Respiratory failure</topic><topic>Risk Assessment</topic><topic>Risk Factors</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Severe SARS-CoV-2 infection</topic><topic>Software</topic><topic>Spain - epidemiology</topic><topic>Statistics</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez, Alejandro</creatorcontrib><creatorcontrib>Ruiz-Botella, Manuel</creatorcontrib><creatorcontrib>Martín-Loeches, Ignacio</creatorcontrib><creatorcontrib>Jimenez Herrera, María</creatorcontrib><creatorcontrib>Solé-Violan, Jordi</creatorcontrib><creatorcontrib>Gómez, Josep</creatorcontrib><creatorcontrib>Bodí, María</creatorcontrib><creatorcontrib>Trefler, Sandra</creatorcontrib><creatorcontrib>Papiol, Elisabeth</creatorcontrib><creatorcontrib>Díaz, Emili</creatorcontrib><creatorcontrib>Suberviola, Borja</creatorcontrib><creatorcontrib>Vallverdu, Montserrat</creatorcontrib><creatorcontrib>Mayor-Vázquez, Eric</creatorcontrib><creatorcontrib>Albaya Moreno, Antonio</creatorcontrib><creatorcontrib>Canabal Berlanga, Alfonso</creatorcontrib><creatorcontrib>Sánchez, Miguel</creatorcontrib><creatorcontrib>Del Valle Ortíz, María</creatorcontrib><creatorcontrib>Ballesteros, Juan Carlos</creatorcontrib><creatorcontrib>Martín Iglesias, Lorena</creatorcontrib><creatorcontrib>Marín-Corral, Judith</creatorcontrib><creatorcontrib>López Ramos, Esther</creatorcontrib><creatorcontrib>Hidalgo Valverde, Virginia</creatorcontrib><creatorcontrib>Vidaur Tello, Loreto Vidaur</creatorcontrib><creatorcontrib>Sancho Chinesta, Susana</creatorcontrib><creatorcontrib>Gonzáles de Molina, Francisco Javier</creatorcontrib><creatorcontrib>Herrero García, Sandra</creatorcontrib><creatorcontrib>Sena Pérez, Carmen Carolina</creatorcontrib><creatorcontrib>Pozo Laderas, Juan Carlos</creatorcontrib><creatorcontrib>Rodríguez García, Raquel</creatorcontrib><creatorcontrib>Estella, Angel</creatorcontrib><creatorcontrib>Ferrer, Ricard</creatorcontrib><creatorcontrib>COVID-19 SEMICYUC Working Group</creatorcontrib><creatorcontrib>on behalf of COVID-19 SEMICYUC Working Group</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Critical care (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez, Alejandro</au><au>Ruiz-Botella, Manuel</au><au>Martín-Loeches, Ignacio</au><au>Jimenez Herrera, María</au><au>Solé-Violan, Jordi</au><au>Gómez, Josep</au><au>Bodí, María</au><au>Trefler, Sandra</au><au>Papiol, Elisabeth</au><au>Díaz, Emili</au><au>Suberviola, Borja</au><au>Vallverdu, Montserrat</au><au>Mayor-Vázquez, Eric</au><au>Albaya Moreno, Antonio</au><au>Canabal Berlanga, Alfonso</au><au>Sánchez, Miguel</au><au>Del Valle Ortíz, María</au><au>Ballesteros, Juan Carlos</au><au>Martín Iglesias, Lorena</au><au>Marín-Corral, Judith</au><au>López Ramos, Esther</au><au>Hidalgo Valverde, Virginia</au><au>Vidaur Tello, Loreto Vidaur</au><au>Sancho Chinesta, Susana</au><au>Gonzáles de Molina, Francisco Javier</au><au>Herrero García, Sandra</au><au>Sena Pérez, Carmen Carolina</au><au>Pozo Laderas, Juan Carlos</au><au>Rodríguez García, Raquel</au><au>Estella, Angel</au><au>Ferrer, Ricard</au><aucorp>COVID-19 SEMICYUC Working Group</aucorp><aucorp>on behalf of COVID-19 SEMICYUC Working Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain</atitle><jtitle>Critical care (London, England)</jtitle><addtitle>Crit Care</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>25</volume><issue>1</issue><spage>63</spage><epage>63</epage><pages>63-63</pages><artnum>63</artnum><issn>1364-8535</issn><eissn>1466-609X</eissn><eissn>1364-8535</eissn><eissn>1366-609X</eissn><abstract>The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient's factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves. The database included a total of 2022 patients (mean age 64 [IQR 5-71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10-17]) and SOFA score (5 [IQR 3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (&lt; 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (&gt; 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications. The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a "one-size-fits-all" model in practice.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>33588914</pmid><doi>10.1186/s13054-021-03487-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8828-5984</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-8535
ispartof Critical care (London, England), 2021-02, Vol.25 (1), p.63-63, Article 63
issn 1364-8535
1466-609X
1364-8535
1366-609X
language eng
recordid cdi_gale_infotracmisc_A653604646
source Publicly Available Content Database; PMC (PubMed Central); Coronavirus Research Database
subjects Accuracy
Aged
Cluster Analysis
Clustering
Coronaviruses
COVID-19
COVID-19 - mortality
COVID-19 - therapy
Critical care
Critical Illness
Critically ill
Female
Genotype & phenotype
Hospitals
Humans
Infections
Intensive care
Laboratories
Machine learning
Male
Medical prognosis
Medical research
Medicine, Experimental
Methods
Middle Aged
Mortality
Patients
Phenotype
Phenotypes
Population
Principal components analysis
Prognosis
Regression analysis
Respiratory failure
Risk Assessment
Risk Factors
Severe acute respiratory syndrome coronavirus 2
Severe SARS-CoV-2 infection
Software
Spain - epidemiology
Statistics
Variables
title Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deploying%20unsupervised%20clustering%20analysis%20to%20derive%20clinical%20phenotypes%20and%20risk%20factors%20associated%20with%20mortality%20risk%20in%202022%20critically%20ill%20patients%20with%20COVID-19%20in%20Spain&rft.jtitle=Critical%20care%20(London,%20England)&rft.au=Rodr%C3%ADguez,%20Alejandro&rft.aucorp=COVID-19%20SEMICYUC%20Working%20Group&rft.date=2021-02-15&rft.volume=25&rft.issue=1&rft.spage=63&rft.epage=63&rft.pages=63-63&rft.artnum=63&rft.issn=1364-8535&rft.eissn=1466-609X&rft_id=info:doi/10.1186/s13054-021-03487-8&rft_dat=%3Cgale_doaj_%3EA653604646%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490912697&rft_id=info:pmid/33588914&rft_galeid=A653604646&rfr_iscdi=true