Loading…
Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain
The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. Prospective, multicenter, observational study of critically il...
Saved in:
Published in: | Critical care (London, England) England), 2021-02, Vol.25 (1), p.63-63, Article 63 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3 |
container_end_page | 63 |
container_issue | 1 |
container_start_page | 63 |
container_title | Critical care (London, England) |
container_volume | 25 |
creator | Rodríguez, Alejandro Ruiz-Botella, Manuel Martín-Loeches, Ignacio Jimenez Herrera, María Solé-Violan, Jordi Gómez, Josep Bodí, María Trefler, Sandra Papiol, Elisabeth Díaz, Emili Suberviola, Borja Vallverdu, Montserrat Mayor-Vázquez, Eric Albaya Moreno, Antonio Canabal Berlanga, Alfonso Sánchez, Miguel Del Valle Ortíz, María Ballesteros, Juan Carlos Martín Iglesias, Lorena Marín-Corral, Judith López Ramos, Esther Hidalgo Valverde, Virginia Vidaur Tello, Loreto Vidaur Sancho Chinesta, Susana Gonzáles de Molina, Francisco Javier Herrero García, Sandra Sena Pérez, Carmen Carolina Pozo Laderas, Juan Carlos Rodríguez García, Raquel Estella, Angel Ferrer, Ricard |
description | The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes.
Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient's factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves.
The database included a total of 2022 patients (mean age 64 [IQR 5-71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10-17]) and SOFA score (5 [IQR 3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age ( 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications.
The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a "one-size-fits-all" model in practice. |
doi_str_mv | 10.1186/s13054-021-03487-8 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_gale_infotracmisc_A653604646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A653604646</galeid><doaj_id>oai_doaj_org_article_39ae7bf1a6444a9c9d3bf344819cf233</doaj_id><sourcerecordid>A653604646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3</originalsourceid><addsrcrecordid>eNpdkstu1DAUhiMEomXgBVigSGzYBHyLY2-QqimXkSp1wUXsrBPHnvGQiYPtDMpT8Yp4mlK1rGwdf-ezj_wXxUuM3mIs-LuIKapZhQiuEGWiqcSj4hwzziuO5I_HeU85q0RN67PiWYx7hHAjOH1anFFaCyExOy_-XJqx97MbtuU0xGk04eii6UrdTzGZcKrDAP0cXSyTL7tcOpp86ganoS_HnRl8mkcTM9aVwcWfpQWdfMiFGL12kLLtt0u78uBDgt6lecHcUBJESKmDSydXP5euz0ZIzgwpLj3r6--bywrLE_1lBDc8L55Y6KN5cbuuim8fP3xdf66urj9t1hdXla4JS1UnOkYktNQCcEJBtB21lhtCkSAWGkkQbaS0RJumxlJ2VmMtGesozi1tS1fFZvF2HvZqDO4AYVYenLop-LBVEPK7e6OoBNO0FgNnjIHUsqOtpYwJLLUllGbX-8U1Tu3BdDqPF6B_IH14Mrid2vqjaoSgIv_fqnhzKwj-12RiUgcXtel7GIyfoiJMIowl501GX_-H7v0U8g8ulMSEy3vUFvIAbrA-36tPUnXBa8oR44xniiyUDj7GYOzdkzFSpwSqJYEqJ1DdJFCJ3PTq_rB3Lf8iR_8CpljZ4Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490912697</pqid></control><display><type>article</type><title>Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain</title><source>Publicly Available Content Database</source><source>PMC (PubMed Central)</source><source>Coronavirus Research Database</source><creator>Rodríguez, Alejandro ; Ruiz-Botella, Manuel ; Martín-Loeches, Ignacio ; Jimenez Herrera, María ; Solé-Violan, Jordi ; Gómez, Josep ; Bodí, María ; Trefler, Sandra ; Papiol, Elisabeth ; Díaz, Emili ; Suberviola, Borja ; Vallverdu, Montserrat ; Mayor-Vázquez, Eric ; Albaya Moreno, Antonio ; Canabal Berlanga, Alfonso ; Sánchez, Miguel ; Del Valle Ortíz, María ; Ballesteros, Juan Carlos ; Martín Iglesias, Lorena ; Marín-Corral, Judith ; López Ramos, Esther ; Hidalgo Valverde, Virginia ; Vidaur Tello, Loreto Vidaur ; Sancho Chinesta, Susana ; Gonzáles de Molina, Francisco Javier ; Herrero García, Sandra ; Sena Pérez, Carmen Carolina ; Pozo Laderas, Juan Carlos ; Rodríguez García, Raquel ; Estella, Angel ; Ferrer, Ricard</creator><creatorcontrib>Rodríguez, Alejandro ; Ruiz-Botella, Manuel ; Martín-Loeches, Ignacio ; Jimenez Herrera, María ; Solé-Violan, Jordi ; Gómez, Josep ; Bodí, María ; Trefler, Sandra ; Papiol, Elisabeth ; Díaz, Emili ; Suberviola, Borja ; Vallverdu, Montserrat ; Mayor-Vázquez, Eric ; Albaya Moreno, Antonio ; Canabal Berlanga, Alfonso ; Sánchez, Miguel ; Del Valle Ortíz, María ; Ballesteros, Juan Carlos ; Martín Iglesias, Lorena ; Marín-Corral, Judith ; López Ramos, Esther ; Hidalgo Valverde, Virginia ; Vidaur Tello, Loreto Vidaur ; Sancho Chinesta, Susana ; Gonzáles de Molina, Francisco Javier ; Herrero García, Sandra ; Sena Pérez, Carmen Carolina ; Pozo Laderas, Juan Carlos ; Rodríguez García, Raquel ; Estella, Angel ; Ferrer, Ricard ; COVID-19 SEMICYUC Working Group ; on behalf of COVID-19 SEMICYUC Working Group</creatorcontrib><description>The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes.
Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient's factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves.
The database included a total of 2022 patients (mean age 64 [IQR 5-71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10-17]) and SOFA score (5 [IQR 3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (< 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (> 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications.
The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a "one-size-fits-all" model in practice.</description><identifier>ISSN: 1364-8535</identifier><identifier>EISSN: 1466-609X</identifier><identifier>EISSN: 1364-8535</identifier><identifier>EISSN: 1366-609X</identifier><identifier>DOI: 10.1186/s13054-021-03487-8</identifier><identifier>PMID: 33588914</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Accuracy ; Aged ; Cluster Analysis ; Clustering ; Coronaviruses ; COVID-19 ; COVID-19 - mortality ; COVID-19 - therapy ; Critical care ; Critical Illness ; Critically ill ; Female ; Genotype & phenotype ; Hospitals ; Humans ; Infections ; Intensive care ; Laboratories ; Machine learning ; Male ; Medical prognosis ; Medical research ; Medicine, Experimental ; Methods ; Middle Aged ; Mortality ; Patients ; Phenotype ; Phenotypes ; Population ; Principal components analysis ; Prognosis ; Regression analysis ; Respiratory failure ; Risk Assessment ; Risk Factors ; Severe acute respiratory syndrome coronavirus 2 ; Severe SARS-CoV-2 infection ; Software ; Spain - epidemiology ; Statistics ; Variables</subject><ispartof>Critical care (London, England), 2021-02, Vol.25 (1), p.63-63, Article 63</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3</citedby><cites>FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3</cites><orcidid>0000-0001-8828-5984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7883885/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2490912697?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,38493,43871,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33588914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez, Alejandro</creatorcontrib><creatorcontrib>Ruiz-Botella, Manuel</creatorcontrib><creatorcontrib>Martín-Loeches, Ignacio</creatorcontrib><creatorcontrib>Jimenez Herrera, María</creatorcontrib><creatorcontrib>Solé-Violan, Jordi</creatorcontrib><creatorcontrib>Gómez, Josep</creatorcontrib><creatorcontrib>Bodí, María</creatorcontrib><creatorcontrib>Trefler, Sandra</creatorcontrib><creatorcontrib>Papiol, Elisabeth</creatorcontrib><creatorcontrib>Díaz, Emili</creatorcontrib><creatorcontrib>Suberviola, Borja</creatorcontrib><creatorcontrib>Vallverdu, Montserrat</creatorcontrib><creatorcontrib>Mayor-Vázquez, Eric</creatorcontrib><creatorcontrib>Albaya Moreno, Antonio</creatorcontrib><creatorcontrib>Canabal Berlanga, Alfonso</creatorcontrib><creatorcontrib>Sánchez, Miguel</creatorcontrib><creatorcontrib>Del Valle Ortíz, María</creatorcontrib><creatorcontrib>Ballesteros, Juan Carlos</creatorcontrib><creatorcontrib>Martín Iglesias, Lorena</creatorcontrib><creatorcontrib>Marín-Corral, Judith</creatorcontrib><creatorcontrib>López Ramos, Esther</creatorcontrib><creatorcontrib>Hidalgo Valverde, Virginia</creatorcontrib><creatorcontrib>Vidaur Tello, Loreto Vidaur</creatorcontrib><creatorcontrib>Sancho Chinesta, Susana</creatorcontrib><creatorcontrib>Gonzáles de Molina, Francisco Javier</creatorcontrib><creatorcontrib>Herrero García, Sandra</creatorcontrib><creatorcontrib>Sena Pérez, Carmen Carolina</creatorcontrib><creatorcontrib>Pozo Laderas, Juan Carlos</creatorcontrib><creatorcontrib>Rodríguez García, Raquel</creatorcontrib><creatorcontrib>Estella, Angel</creatorcontrib><creatorcontrib>Ferrer, Ricard</creatorcontrib><creatorcontrib>COVID-19 SEMICYUC Working Group</creatorcontrib><creatorcontrib>on behalf of COVID-19 SEMICYUC Working Group</creatorcontrib><title>Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain</title><title>Critical care (London, England)</title><addtitle>Crit Care</addtitle><description>The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes.
Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient's factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves.
The database included a total of 2022 patients (mean age 64 [IQR 5-71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10-17]) and SOFA score (5 [IQR 3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (< 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (> 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications.
The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a "one-size-fits-all" model in practice.</description><subject>Accuracy</subject><subject>Aged</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - mortality</subject><subject>COVID-19 - therapy</subject><subject>Critical care</subject><subject>Critical Illness</subject><subject>Critically ill</subject><subject>Female</subject><subject>Genotype & phenotype</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Infections</subject><subject>Intensive care</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Mortality</subject><subject>Patients</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Population</subject><subject>Principal components analysis</subject><subject>Prognosis</subject><subject>Regression analysis</subject><subject>Respiratory failure</subject><subject>Risk Assessment</subject><subject>Risk Factors</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Severe SARS-CoV-2 infection</subject><subject>Software</subject><subject>Spain - epidemiology</subject><subject>Statistics</subject><subject>Variables</subject><issn>1364-8535</issn><issn>1466-609X</issn><issn>1364-8535</issn><issn>1366-609X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkstu1DAUhiMEomXgBVigSGzYBHyLY2-QqimXkSp1wUXsrBPHnvGQiYPtDMpT8Yp4mlK1rGwdf-ezj_wXxUuM3mIs-LuIKapZhQiuEGWiqcSj4hwzziuO5I_HeU85q0RN67PiWYx7hHAjOH1anFFaCyExOy_-XJqx97MbtuU0xGk04eii6UrdTzGZcKrDAP0cXSyTL7tcOpp86ganoS_HnRl8mkcTM9aVwcWfpQWdfMiFGL12kLLtt0u78uBDgt6lecHcUBJESKmDSydXP5euz0ZIzgwpLj3r6--bywrLE_1lBDc8L55Y6KN5cbuuim8fP3xdf66urj9t1hdXla4JS1UnOkYktNQCcEJBtB21lhtCkSAWGkkQbaS0RJumxlJ2VmMtGesozi1tS1fFZvF2HvZqDO4AYVYenLop-LBVEPK7e6OoBNO0FgNnjIHUsqOtpYwJLLUllGbX-8U1Tu3BdDqPF6B_IH14Mrid2vqjaoSgIv_fqnhzKwj-12RiUgcXtel7GIyfoiJMIowl501GX_-H7v0U8g8ulMSEy3vUFvIAbrA-36tPUnXBa8oR44xniiyUDj7GYOzdkzFSpwSqJYEqJ1DdJFCJ3PTq_rB3Lf8iR_8CpljZ4Q</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Rodríguez, Alejandro</creator><creator>Ruiz-Botella, Manuel</creator><creator>Martín-Loeches, Ignacio</creator><creator>Jimenez Herrera, María</creator><creator>Solé-Violan, Jordi</creator><creator>Gómez, Josep</creator><creator>Bodí, María</creator><creator>Trefler, Sandra</creator><creator>Papiol, Elisabeth</creator><creator>Díaz, Emili</creator><creator>Suberviola, Borja</creator><creator>Vallverdu, Montserrat</creator><creator>Mayor-Vázquez, Eric</creator><creator>Albaya Moreno, Antonio</creator><creator>Canabal Berlanga, Alfonso</creator><creator>Sánchez, Miguel</creator><creator>Del Valle Ortíz, María</creator><creator>Ballesteros, Juan Carlos</creator><creator>Martín Iglesias, Lorena</creator><creator>Marín-Corral, Judith</creator><creator>López Ramos, Esther</creator><creator>Hidalgo Valverde, Virginia</creator><creator>Vidaur Tello, Loreto Vidaur</creator><creator>Sancho Chinesta, Susana</creator><creator>Gonzáles de Molina, Francisco Javier</creator><creator>Herrero García, Sandra</creator><creator>Sena Pérez, Carmen Carolina</creator><creator>Pozo Laderas, Juan Carlos</creator><creator>Rodríguez García, Raquel</creator><creator>Estella, Angel</creator><creator>Ferrer, Ricard</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8828-5984</orcidid></search><sort><creationdate>20210215</creationdate><title>Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain</title><author>Rodríguez, Alejandro ; Ruiz-Botella, Manuel ; Martín-Loeches, Ignacio ; Jimenez Herrera, María ; Solé-Violan, Jordi ; Gómez, Josep ; Bodí, María ; Trefler, Sandra ; Papiol, Elisabeth ; Díaz, Emili ; Suberviola, Borja ; Vallverdu, Montserrat ; Mayor-Vázquez, Eric ; Albaya Moreno, Antonio ; Canabal Berlanga, Alfonso ; Sánchez, Miguel ; Del Valle Ortíz, María ; Ballesteros, Juan Carlos ; Martín Iglesias, Lorena ; Marín-Corral, Judith ; López Ramos, Esther ; Hidalgo Valverde, Virginia ; Vidaur Tello, Loreto Vidaur ; Sancho Chinesta, Susana ; Gonzáles de Molina, Francisco Javier ; Herrero García, Sandra ; Sena Pérez, Carmen Carolina ; Pozo Laderas, Juan Carlos ; Rodríguez García, Raquel ; Estella, Angel ; Ferrer, Ricard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Aged</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - mortality</topic><topic>COVID-19 - therapy</topic><topic>Critical care</topic><topic>Critical Illness</topic><topic>Critically ill</topic><topic>Female</topic><topic>Genotype & phenotype</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Infections</topic><topic>Intensive care</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Mortality</topic><topic>Patients</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Population</topic><topic>Principal components analysis</topic><topic>Prognosis</topic><topic>Regression analysis</topic><topic>Respiratory failure</topic><topic>Risk Assessment</topic><topic>Risk Factors</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Severe SARS-CoV-2 infection</topic><topic>Software</topic><topic>Spain - epidemiology</topic><topic>Statistics</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez, Alejandro</creatorcontrib><creatorcontrib>Ruiz-Botella, Manuel</creatorcontrib><creatorcontrib>Martín-Loeches, Ignacio</creatorcontrib><creatorcontrib>Jimenez Herrera, María</creatorcontrib><creatorcontrib>Solé-Violan, Jordi</creatorcontrib><creatorcontrib>Gómez, Josep</creatorcontrib><creatorcontrib>Bodí, María</creatorcontrib><creatorcontrib>Trefler, Sandra</creatorcontrib><creatorcontrib>Papiol, Elisabeth</creatorcontrib><creatorcontrib>Díaz, Emili</creatorcontrib><creatorcontrib>Suberviola, Borja</creatorcontrib><creatorcontrib>Vallverdu, Montserrat</creatorcontrib><creatorcontrib>Mayor-Vázquez, Eric</creatorcontrib><creatorcontrib>Albaya Moreno, Antonio</creatorcontrib><creatorcontrib>Canabal Berlanga, Alfonso</creatorcontrib><creatorcontrib>Sánchez, Miguel</creatorcontrib><creatorcontrib>Del Valle Ortíz, María</creatorcontrib><creatorcontrib>Ballesteros, Juan Carlos</creatorcontrib><creatorcontrib>Martín Iglesias, Lorena</creatorcontrib><creatorcontrib>Marín-Corral, Judith</creatorcontrib><creatorcontrib>López Ramos, Esther</creatorcontrib><creatorcontrib>Hidalgo Valverde, Virginia</creatorcontrib><creatorcontrib>Vidaur Tello, Loreto Vidaur</creatorcontrib><creatorcontrib>Sancho Chinesta, Susana</creatorcontrib><creatorcontrib>Gonzáles de Molina, Francisco Javier</creatorcontrib><creatorcontrib>Herrero García, Sandra</creatorcontrib><creatorcontrib>Sena Pérez, Carmen Carolina</creatorcontrib><creatorcontrib>Pozo Laderas, Juan Carlos</creatorcontrib><creatorcontrib>Rodríguez García, Raquel</creatorcontrib><creatorcontrib>Estella, Angel</creatorcontrib><creatorcontrib>Ferrer, Ricard</creatorcontrib><creatorcontrib>COVID-19 SEMICYUC Working Group</creatorcontrib><creatorcontrib>on behalf of COVID-19 SEMICYUC Working Group</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Critical care (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez, Alejandro</au><au>Ruiz-Botella, Manuel</au><au>Martín-Loeches, Ignacio</au><au>Jimenez Herrera, María</au><au>Solé-Violan, Jordi</au><au>Gómez, Josep</au><au>Bodí, María</au><au>Trefler, Sandra</au><au>Papiol, Elisabeth</au><au>Díaz, Emili</au><au>Suberviola, Borja</au><au>Vallverdu, Montserrat</au><au>Mayor-Vázquez, Eric</au><au>Albaya Moreno, Antonio</au><au>Canabal Berlanga, Alfonso</au><au>Sánchez, Miguel</au><au>Del Valle Ortíz, María</au><au>Ballesteros, Juan Carlos</au><au>Martín Iglesias, Lorena</au><au>Marín-Corral, Judith</au><au>López Ramos, Esther</au><au>Hidalgo Valverde, Virginia</au><au>Vidaur Tello, Loreto Vidaur</au><au>Sancho Chinesta, Susana</au><au>Gonzáles de Molina, Francisco Javier</au><au>Herrero García, Sandra</au><au>Sena Pérez, Carmen Carolina</au><au>Pozo Laderas, Juan Carlos</au><au>Rodríguez García, Raquel</au><au>Estella, Angel</au><au>Ferrer, Ricard</au><aucorp>COVID-19 SEMICYUC Working Group</aucorp><aucorp>on behalf of COVID-19 SEMICYUC Working Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain</atitle><jtitle>Critical care (London, England)</jtitle><addtitle>Crit Care</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>25</volume><issue>1</issue><spage>63</spage><epage>63</epage><pages>63-63</pages><artnum>63</artnum><issn>1364-8535</issn><eissn>1466-609X</eissn><eissn>1364-8535</eissn><eissn>1366-609X</eissn><abstract>The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes.
Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient's factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves.
The database included a total of 2022 patients (mean age 64 [IQR 5-71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10-17]) and SOFA score (5 [IQR 3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (< 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (> 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications.
The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a "one-size-fits-all" model in practice.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>33588914</pmid><doi>10.1186/s13054-021-03487-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8828-5984</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-8535 |
ispartof | Critical care (London, England), 2021-02, Vol.25 (1), p.63-63, Article 63 |
issn | 1364-8535 1466-609X 1364-8535 1366-609X |
language | eng |
recordid | cdi_gale_infotracmisc_A653604646 |
source | Publicly Available Content Database; PMC (PubMed Central); Coronavirus Research Database |
subjects | Accuracy Aged Cluster Analysis Clustering Coronaviruses COVID-19 COVID-19 - mortality COVID-19 - therapy Critical care Critical Illness Critically ill Female Genotype & phenotype Hospitals Humans Infections Intensive care Laboratories Machine learning Male Medical prognosis Medical research Medicine, Experimental Methods Middle Aged Mortality Patients Phenotype Phenotypes Population Principal components analysis Prognosis Regression analysis Respiratory failure Risk Assessment Risk Factors Severe acute respiratory syndrome coronavirus 2 Severe SARS-CoV-2 infection Software Spain - epidemiology Statistics Variables |
title | Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deploying%20unsupervised%20clustering%20analysis%20to%20derive%20clinical%20phenotypes%20and%20risk%20factors%20associated%20with%20mortality%20risk%20in%202022%20critically%20ill%20patients%20with%20COVID-19%20in%20Spain&rft.jtitle=Critical%20care%20(London,%20England)&rft.au=Rodr%C3%ADguez,%20Alejandro&rft.aucorp=COVID-19%20SEMICYUC%20Working%20Group&rft.date=2021-02-15&rft.volume=25&rft.issue=1&rft.spage=63&rft.epage=63&rft.pages=63-63&rft.artnum=63&rft.issn=1364-8535&rft.eissn=1466-609X&rft_id=info:doi/10.1186/s13054-021-03487-8&rft_dat=%3Cgale_doaj_%3EA653604646%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-d8d429ab3faa623a8bd3ff6e23082fa79203799f2ce75199dfc1c944d313fabb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490912697&rft_id=info:pmid/33588914&rft_galeid=A653604646&rfr_iscdi=true |