Loading…
Understanding the differential impacts of COVID-19 among hospitalised patients in South Africa for equitable response
Background There are limited in-depth analyses of COVID-19 differential impacts, especially in resource-limited settings such as South Africa (SA).Objectives To explore context-specific sociodemographic heterogeneities in order to understand the differential impacts of COVID-19.Methods Descriptive e...
Saved in:
Published in: | South African medical journal 2021-11, Vol.111 (11), p.1084-1091 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-ac9a867a4c1e6260e6d8e3f3b0746bfe2a64021e09028c63dd05047863701cf63 |
---|---|
cites | |
container_end_page | 1091 |
container_issue | 11 |
container_start_page | 1084 |
container_title | South African medical journal |
container_volume | 111 |
creator | Phaswana-mafuya, N Shisana, O Jassat, W Baral, S D Makofane, K Phalane, E Zuma, K Zungu, N Chadyiwa, M |
description | Background There are limited in-depth analyses of COVID-19 differential impacts, especially in resource-limited settings such as South Africa (SA).Objectives To explore context-specific sociodemographic heterogeneities in order to understand the differential impacts of COVID-19.Methods Descriptive epidemiological COVID-19 hospitalisation and mortality data were drawn from daily hospital surveillance data, National Institute for Communicable Diseases (NICD) update reports (6 March 2020 - 24 January 2021) and the Eastern Cape Daily Epidemiological Report (as of 24 March 2021). We examined hospitalisations and mortality by sociodemographics (age using 10-year age bands, sex and race) using absolute numbers, proportions and ratios. The data are presented using tables received from the NICD, and charts were created to show trends and patterns. Mortality rates (per 100 000 population) were calculated using population estimates as a denominator for standardisation. Associations were determined through relative risks (RRs), 95% confidence intervals (CIs) and p-values |
doi_str_mv | 10.7196/SAMJ.2021.v111i11.15812 |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A681771489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681771489</galeid><sabinet_id>https://hdl.handle.net/10520/ejc-m_samj_v111_i11_a1084</sabinet_id><sourcerecordid>A681771489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-ac9a867a4c1e6260e6d8e3f3b0746bfe2a64021e09028c63dd05047863701cf63</originalsourceid><addsrcrecordid>eNptkc1q3DAUhU1podO0z1BBoTu7uv6R7OUw_UtIySJNt-KOfBVrsC1XkgN9-8qZLBooWghJ33fE5WTZe-CFhE58ut3_uCpKXkLxAAAWoICmhfJFtiu5bPMGquZltuNlI_KukfXr7E0IJ57OTSd22Xo39-RDxLm38z2LA7HeGkOe5mhxZHZaUMfAnGGHm1-Xn3PoGE4uoYMLi4042kA9WzDaZARmZ3br1jiwvfFWIzPOM_q9JvA4EvMUFjcHepu9MjgGeve0X2R3X7_8PHzPr2--XR7217muZRtz1B22QmKtgUQpOIm-pcpURy5rcTRUoqjT4MQ7XrZaVH3PG55MUUkO2ojqIvtwzr3HkZSdjYse9WSDVnvRgpRQt12iiv9QafU0We1mMjbdPxM-_iMMhGMcghvXaNNwz0F5BrV3IXgyavF2Qv9HAVdbe2prT23tqaf21GN7ybw6mwGPdqaoAtKyHtUQ4xLU0I9qSJWl37c34E3JFZ20mhI3nR6z1BaGwNu6-gt3qqf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding the differential impacts of COVID-19 among hospitalised patients in South Africa for equitable response</title><source>Directory of Open Access Journals</source><creator>Phaswana-mafuya, N ; Shisana, O ; Jassat, W ; Baral, S D ; Makofane, K ; Phalane, E ; Zuma, K ; Zungu, N ; Chadyiwa, M</creator><creatorcontrib>Phaswana-mafuya, N ; Shisana, O ; Jassat, W ; Baral, S D ; Makofane, K ; Phalane, E ; Zuma, K ; Zungu, N ; Chadyiwa, M</creatorcontrib><description>Background There are limited in-depth analyses of COVID-19 differential impacts, especially in resource-limited settings such as South Africa (SA).Objectives To explore context-specific sociodemographic heterogeneities in order to understand the differential impacts of COVID-19.Methods Descriptive epidemiological COVID-19 hospitalisation and mortality data were drawn from daily hospital surveillance data, National Institute for Communicable Diseases (NICD) update reports (6 March 2020 - 24 January 2021) and the Eastern Cape Daily Epidemiological Report (as of 24 March 2021). We examined hospitalisations and mortality by sociodemographics (age using 10-year age bands, sex and race) using absolute numbers, proportions and ratios. The data are presented using tables received from the NICD, and charts were created to show trends and patterns. Mortality rates (per 100 000 population) were calculated using population estimates as a denominator for standardisation. Associations were determined through relative risks (RRs), 95% confidence intervals (CIs) and p-values</description><identifier>ISSN: 0256-9574</identifier><identifier>EISSN: 2078-5135</identifier><identifier>DOI: 10.7196/SAMJ.2021.v111i11.15812</identifier><language>eng</language><publisher>Health and Medical Publishing Group (HMPG)</publisher><subject>Demographic aspects ; Medical research ; Medicine, Experimental ; Mortality ; Risk factors ; Social aspects ; Social medicine</subject><ispartof>South African medical journal, 2021-11, Vol.111 (11), p.1084-1091</ispartof><rights>COPYRIGHT 2021 Health & Medical Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-ac9a867a4c1e6260e6d8e3f3b0746bfe2a64021e09028c63dd05047863701cf63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Phaswana-mafuya, N</creatorcontrib><creatorcontrib>Shisana, O</creatorcontrib><creatorcontrib>Jassat, W</creatorcontrib><creatorcontrib>Baral, S D</creatorcontrib><creatorcontrib>Makofane, K</creatorcontrib><creatorcontrib>Phalane, E</creatorcontrib><creatorcontrib>Zuma, K</creatorcontrib><creatorcontrib>Zungu, N</creatorcontrib><creatorcontrib>Chadyiwa, M</creatorcontrib><title>Understanding the differential impacts of COVID-19 among hospitalised patients in South Africa for equitable response</title><title>South African medical journal</title><description>Background There are limited in-depth analyses of COVID-19 differential impacts, especially in resource-limited settings such as South Africa (SA).Objectives To explore context-specific sociodemographic heterogeneities in order to understand the differential impacts of COVID-19.Methods Descriptive epidemiological COVID-19 hospitalisation and mortality data were drawn from daily hospital surveillance data, National Institute for Communicable Diseases (NICD) update reports (6 March 2020 - 24 January 2021) and the Eastern Cape Daily Epidemiological Report (as of 24 March 2021). We examined hospitalisations and mortality by sociodemographics (age using 10-year age bands, sex and race) using absolute numbers, proportions and ratios. The data are presented using tables received from the NICD, and charts were created to show trends and patterns. Mortality rates (per 100 000 population) were calculated using population estimates as a denominator for standardisation. Associations were determined through relative risks (RRs), 95% confidence intervals (CIs) and p-values</description><subject>Demographic aspects</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Mortality</subject><subject>Risk factors</subject><subject>Social aspects</subject><subject>Social medicine</subject><issn>0256-9574</issn><issn>2078-5135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkc1q3DAUhU1podO0z1BBoTu7uv6R7OUw_UtIySJNt-KOfBVrsC1XkgN9-8qZLBooWghJ33fE5WTZe-CFhE58ut3_uCpKXkLxAAAWoICmhfJFtiu5bPMGquZltuNlI_KukfXr7E0IJ57OTSd22Xo39-RDxLm38z2LA7HeGkOe5mhxZHZaUMfAnGGHm1-Xn3PoGE4uoYMLi4042kA9WzDaZARmZ3br1jiwvfFWIzPOM_q9JvA4EvMUFjcHepu9MjgGeve0X2R3X7_8PHzPr2--XR7217muZRtz1B22QmKtgUQpOIm-pcpURy5rcTRUoqjT4MQ7XrZaVH3PG55MUUkO2ojqIvtwzr3HkZSdjYse9WSDVnvRgpRQt12iiv9QafU0We1mMjbdPxM-_iMMhGMcghvXaNNwz0F5BrV3IXgyavF2Qv9HAVdbe2prT23tqaf21GN7ybw6mwGPdqaoAtKyHtUQ4xLU0I9qSJWl37c34E3JFZ20mhI3nR6z1BaGwNu6-gt3qqf0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Phaswana-mafuya, N</creator><creator>Shisana, O</creator><creator>Jassat, W</creator><creator>Baral, S D</creator><creator>Makofane, K</creator><creator>Phalane, E</creator><creator>Zuma, K</creator><creator>Zungu, N</creator><creator>Chadyiwa, M</creator><general>Health and Medical Publishing Group (HMPG)</general><general>Health & Medical Publishing Group</general><scope>AEIZH</scope><scope>JRA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211101</creationdate><title>Understanding the differential impacts of COVID-19 among hospitalised patients in South Africa for equitable response</title><author>Phaswana-mafuya, N ; Shisana, O ; Jassat, W ; Baral, S D ; Makofane, K ; Phalane, E ; Zuma, K ; Zungu, N ; Chadyiwa, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-ac9a867a4c1e6260e6d8e3f3b0746bfe2a64021e09028c63dd05047863701cf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Demographic aspects</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Mortality</topic><topic>Risk factors</topic><topic>Social aspects</topic><topic>Social medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phaswana-mafuya, N</creatorcontrib><creatorcontrib>Shisana, O</creatorcontrib><creatorcontrib>Jassat, W</creatorcontrib><creatorcontrib>Baral, S D</creatorcontrib><creatorcontrib>Makofane, K</creatorcontrib><creatorcontrib>Phalane, E</creatorcontrib><creatorcontrib>Zuma, K</creatorcontrib><creatorcontrib>Zungu, N</creatorcontrib><creatorcontrib>Chadyiwa, M</creatorcontrib><collection>Sabinet:Open Access</collection><collection>Sabinet African Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>South African medical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phaswana-mafuya, N</au><au>Shisana, O</au><au>Jassat, W</au><au>Baral, S D</au><au>Makofane, K</au><au>Phalane, E</au><au>Zuma, K</au><au>Zungu, N</au><au>Chadyiwa, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the differential impacts of COVID-19 among hospitalised patients in South Africa for equitable response</atitle><jtitle>South African medical journal</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>111</volume><issue>11</issue><spage>1084</spage><epage>1091</epage><pages>1084-1091</pages><issn>0256-9574</issn><eissn>2078-5135</eissn><abstract>Background There are limited in-depth analyses of COVID-19 differential impacts, especially in resource-limited settings such as South Africa (SA).Objectives To explore context-specific sociodemographic heterogeneities in order to understand the differential impacts of COVID-19.Methods Descriptive epidemiological COVID-19 hospitalisation and mortality data were drawn from daily hospital surveillance data, National Institute for Communicable Diseases (NICD) update reports (6 March 2020 - 24 January 2021) and the Eastern Cape Daily Epidemiological Report (as of 24 March 2021). We examined hospitalisations and mortality by sociodemographics (age using 10-year age bands, sex and race) using absolute numbers, proportions and ratios. The data are presented using tables received from the NICD, and charts were created to show trends and patterns. Mortality rates (per 100 000 population) were calculated using population estimates as a denominator for standardisation. Associations were determined through relative risks (RRs), 95% confidence intervals (CIs) and p-values</abstract><pub>Health and Medical Publishing Group (HMPG)</pub><doi>10.7196/SAMJ.2021.v111i11.15812</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-9574 |
ispartof | South African medical journal, 2021-11, Vol.111 (11), p.1084-1091 |
issn | 0256-9574 2078-5135 |
language | eng |
recordid | cdi_gale_infotracmisc_A681771489 |
source | Directory of Open Access Journals |
subjects | Demographic aspects Medical research Medicine, Experimental Mortality Risk factors Social aspects Social medicine |
title | Understanding the differential impacts of COVID-19 among hospitalised patients in South Africa for equitable response |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20differential%20impacts%20of%20COVID-19%20among%20hospitalised%20patients%20in%20South%20Africa%20for%20equitable%20response&rft.jtitle=South%20African%20medical%20journal&rft.au=Phaswana-mafuya,%20N&rft.date=2021-11-01&rft.volume=111&rft.issue=11&rft.spage=1084&rft.epage=1091&rft.pages=1084-1091&rft.issn=0256-9574&rft.eissn=2078-5135&rft_id=info:doi/10.7196/SAMJ.2021.v111i11.15812&rft_dat=%3Cgale_cross%3EA681771489%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-ac9a867a4c1e6260e6d8e3f3b0746bfe2a64021e09028c63dd05047863701cf63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A681771489&rft_sabinet_id=https://hdl.handle.net/10520/ejc-m_samj_v111_i11_a1084&rfr_iscdi=true |