Loading…

Understanding the differential impacts of COVID-19 among hospitalised patients in South Africa for equitable response

Background There are limited in-depth analyses of COVID-19 differential impacts, especially in resource-limited settings such as South Africa (SA).Objectives To explore context-specific sociodemographic heterogeneities in order to understand the differential impacts of COVID-19.Methods Descriptive e...

Full description

Saved in:
Bibliographic Details
Published in:South African medical journal 2021-11, Vol.111 (11), p.1084-1091
Main Authors: Phaswana-mafuya, N, Shisana, O, Jassat, W, Baral, S D, Makofane, K, Phalane, E, Zuma, K, Zungu, N, Chadyiwa, M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-ac9a867a4c1e6260e6d8e3f3b0746bfe2a64021e09028c63dd05047863701cf63
cites
container_end_page 1091
container_issue 11
container_start_page 1084
container_title South African medical journal
container_volume 111
creator Phaswana-mafuya, N
Shisana, O
Jassat, W
Baral, S D
Makofane, K
Phalane, E
Zuma, K
Zungu, N
Chadyiwa, M
description Background There are limited in-depth analyses of COVID-19 differential impacts, especially in resource-limited settings such as South Africa (SA).Objectives To explore context-specific sociodemographic heterogeneities in order to understand the differential impacts of COVID-19.Methods Descriptive epidemiological COVID-19 hospitalisation and mortality data were drawn from daily hospital surveillance data, National Institute for Communicable Diseases (NICD) update reports (6 March 2020 - 24 January 2021) and the Eastern Cape Daily Epidemiological Report (as of 24 March 2021). We examined hospitalisations and mortality by sociodemographics (age using 10-year age bands, sex and race) using absolute numbers, proportions and ratios. The data are presented using tables received from the NICD, and charts were created to show trends and patterns. Mortality rates (per 100 000 population) were calculated using population estimates as a denominator for standardisation. Associations were determined through relative risks (RRs), 95% confidence intervals (CIs) and p-values
doi_str_mv 10.7196/SAMJ.2021.v111i11.15812
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A681771489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681771489</galeid><sabinet_id>https://hdl.handle.net/10520/ejc-m_samj_v111_i11_a1084</sabinet_id><sourcerecordid>A681771489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-ac9a867a4c1e6260e6d8e3f3b0746bfe2a64021e09028c63dd05047863701cf63</originalsourceid><addsrcrecordid>eNptkc1q3DAUhU1podO0z1BBoTu7uv6R7OUw_UtIySJNt-KOfBVrsC1XkgN9-8qZLBooWghJ33fE5WTZe-CFhE58ut3_uCpKXkLxAAAWoICmhfJFtiu5bPMGquZltuNlI_KukfXr7E0IJ57OTSd22Xo39-RDxLm38z2LA7HeGkOe5mhxZHZaUMfAnGGHm1-Xn3PoGE4uoYMLi4042kA9WzDaZARmZ3br1jiwvfFWIzPOM_q9JvA4EvMUFjcHepu9MjgGeve0X2R3X7_8PHzPr2--XR7217muZRtz1B22QmKtgUQpOIm-pcpURy5rcTRUoqjT4MQ7XrZaVH3PG55MUUkO2ojqIvtwzr3HkZSdjYse9WSDVnvRgpRQt12iiv9QafU0We1mMjbdPxM-_iMMhGMcghvXaNNwz0F5BrV3IXgyavF2Qv9HAVdbe2prT23tqaf21GN7ybw6mwGPdqaoAtKyHtUQ4xLU0I9qSJWl37c34E3JFZ20mhI3nR6z1BaGwNu6-gt3qqf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding the differential impacts of COVID-19 among hospitalised patients in South Africa for equitable response</title><source>Directory of Open Access Journals</source><creator>Phaswana-mafuya, N ; Shisana, O ; Jassat, W ; Baral, S D ; Makofane, K ; Phalane, E ; Zuma, K ; Zungu, N ; Chadyiwa, M</creator><creatorcontrib>Phaswana-mafuya, N ; Shisana, O ; Jassat, W ; Baral, S D ; Makofane, K ; Phalane, E ; Zuma, K ; Zungu, N ; Chadyiwa, M</creatorcontrib><description>Background There are limited in-depth analyses of COVID-19 differential impacts, especially in resource-limited settings such as South Africa (SA).Objectives To explore context-specific sociodemographic heterogeneities in order to understand the differential impacts of COVID-19.Methods Descriptive epidemiological COVID-19 hospitalisation and mortality data were drawn from daily hospital surveillance data, National Institute for Communicable Diseases (NICD) update reports (6 March 2020 - 24 January 2021) and the Eastern Cape Daily Epidemiological Report (as of 24 March 2021). We examined hospitalisations and mortality by sociodemographics (age using 10-year age bands, sex and race) using absolute numbers, proportions and ratios. The data are presented using tables received from the NICD, and charts were created to show trends and patterns. Mortality rates (per 100 000 population) were calculated using population estimates as a denominator for standardisation. Associations were determined through relative risks (RRs), 95% confidence intervals (CIs) and p-values</description><identifier>ISSN: 0256-9574</identifier><identifier>EISSN: 2078-5135</identifier><identifier>DOI: 10.7196/SAMJ.2021.v111i11.15812</identifier><language>eng</language><publisher>Health and Medical Publishing Group (HMPG)</publisher><subject>Demographic aspects ; Medical research ; Medicine, Experimental ; Mortality ; Risk factors ; Social aspects ; Social medicine</subject><ispartof>South African medical journal, 2021-11, Vol.111 (11), p.1084-1091</ispartof><rights>COPYRIGHT 2021 Health &amp; Medical Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-ac9a867a4c1e6260e6d8e3f3b0746bfe2a64021e09028c63dd05047863701cf63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Phaswana-mafuya, N</creatorcontrib><creatorcontrib>Shisana, O</creatorcontrib><creatorcontrib>Jassat, W</creatorcontrib><creatorcontrib>Baral, S D</creatorcontrib><creatorcontrib>Makofane, K</creatorcontrib><creatorcontrib>Phalane, E</creatorcontrib><creatorcontrib>Zuma, K</creatorcontrib><creatorcontrib>Zungu, N</creatorcontrib><creatorcontrib>Chadyiwa, M</creatorcontrib><title>Understanding the differential impacts of COVID-19 among hospitalised patients in South Africa for equitable response</title><title>South African medical journal</title><description>Background There are limited in-depth analyses of COVID-19 differential impacts, especially in resource-limited settings such as South Africa (SA).Objectives To explore context-specific sociodemographic heterogeneities in order to understand the differential impacts of COVID-19.Methods Descriptive epidemiological COVID-19 hospitalisation and mortality data were drawn from daily hospital surveillance data, National Institute for Communicable Diseases (NICD) update reports (6 March 2020 - 24 January 2021) and the Eastern Cape Daily Epidemiological Report (as of 24 March 2021). We examined hospitalisations and mortality by sociodemographics (age using 10-year age bands, sex and race) using absolute numbers, proportions and ratios. The data are presented using tables received from the NICD, and charts were created to show trends and patterns. Mortality rates (per 100 000 population) were calculated using population estimates as a denominator for standardisation. Associations were determined through relative risks (RRs), 95% confidence intervals (CIs) and p-values</description><subject>Demographic aspects</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Mortality</subject><subject>Risk factors</subject><subject>Social aspects</subject><subject>Social medicine</subject><issn>0256-9574</issn><issn>2078-5135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkc1q3DAUhU1podO0z1BBoTu7uv6R7OUw_UtIySJNt-KOfBVrsC1XkgN9-8qZLBooWghJ33fE5WTZe-CFhE58ut3_uCpKXkLxAAAWoICmhfJFtiu5bPMGquZltuNlI_KukfXr7E0IJ57OTSd22Xo39-RDxLm38z2LA7HeGkOe5mhxZHZaUMfAnGGHm1-Xn3PoGE4uoYMLi4042kA9WzDaZARmZ3br1jiwvfFWIzPOM_q9JvA4EvMUFjcHepu9MjgGeve0X2R3X7_8PHzPr2--XR7217muZRtz1B22QmKtgUQpOIm-pcpURy5rcTRUoqjT4MQ7XrZaVH3PG55MUUkO2ojqIvtwzr3HkZSdjYse9WSDVnvRgpRQt12iiv9QafU0We1mMjbdPxM-_iMMhGMcghvXaNNwz0F5BrV3IXgyavF2Qv9HAVdbe2prT23tqaf21GN7ybw6mwGPdqaoAtKyHtUQ4xLU0I9qSJWl37c34E3JFZ20mhI3nR6z1BaGwNu6-gt3qqf0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Phaswana-mafuya, N</creator><creator>Shisana, O</creator><creator>Jassat, W</creator><creator>Baral, S D</creator><creator>Makofane, K</creator><creator>Phalane, E</creator><creator>Zuma, K</creator><creator>Zungu, N</creator><creator>Chadyiwa, M</creator><general>Health and Medical Publishing Group (HMPG)</general><general>Health &amp; Medical Publishing Group</general><scope>AEIZH</scope><scope>JRA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211101</creationdate><title>Understanding the differential impacts of COVID-19 among hospitalised patients in South Africa for equitable response</title><author>Phaswana-mafuya, N ; Shisana, O ; Jassat, W ; Baral, S D ; Makofane, K ; Phalane, E ; Zuma, K ; Zungu, N ; Chadyiwa, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-ac9a867a4c1e6260e6d8e3f3b0746bfe2a64021e09028c63dd05047863701cf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Demographic aspects</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Mortality</topic><topic>Risk factors</topic><topic>Social aspects</topic><topic>Social medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phaswana-mafuya, N</creatorcontrib><creatorcontrib>Shisana, O</creatorcontrib><creatorcontrib>Jassat, W</creatorcontrib><creatorcontrib>Baral, S D</creatorcontrib><creatorcontrib>Makofane, K</creatorcontrib><creatorcontrib>Phalane, E</creatorcontrib><creatorcontrib>Zuma, K</creatorcontrib><creatorcontrib>Zungu, N</creatorcontrib><creatorcontrib>Chadyiwa, M</creatorcontrib><collection>Sabinet:Open Access</collection><collection>Sabinet African Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>South African medical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phaswana-mafuya, N</au><au>Shisana, O</au><au>Jassat, W</au><au>Baral, S D</au><au>Makofane, K</au><au>Phalane, E</au><au>Zuma, K</au><au>Zungu, N</au><au>Chadyiwa, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the differential impacts of COVID-19 among hospitalised patients in South Africa for equitable response</atitle><jtitle>South African medical journal</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>111</volume><issue>11</issue><spage>1084</spage><epage>1091</epage><pages>1084-1091</pages><issn>0256-9574</issn><eissn>2078-5135</eissn><abstract>Background There are limited in-depth analyses of COVID-19 differential impacts, especially in resource-limited settings such as South Africa (SA).Objectives To explore context-specific sociodemographic heterogeneities in order to understand the differential impacts of COVID-19.Methods Descriptive epidemiological COVID-19 hospitalisation and mortality data were drawn from daily hospital surveillance data, National Institute for Communicable Diseases (NICD) update reports (6 March 2020 - 24 January 2021) and the Eastern Cape Daily Epidemiological Report (as of 24 March 2021). We examined hospitalisations and mortality by sociodemographics (age using 10-year age bands, sex and race) using absolute numbers, proportions and ratios. The data are presented using tables received from the NICD, and charts were created to show trends and patterns. Mortality rates (per 100 000 population) were calculated using population estimates as a denominator for standardisation. Associations were determined through relative risks (RRs), 95% confidence intervals (CIs) and p-values</abstract><pub>Health and Medical Publishing Group (HMPG)</pub><doi>10.7196/SAMJ.2021.v111i11.15812</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0256-9574
ispartof South African medical journal, 2021-11, Vol.111 (11), p.1084-1091
issn 0256-9574
2078-5135
language eng
recordid cdi_gale_infotracmisc_A681771489
source Directory of Open Access Journals
subjects Demographic aspects
Medical research
Medicine, Experimental
Mortality
Risk factors
Social aspects
Social medicine
title Understanding the differential impacts of COVID-19 among hospitalised patients in South Africa for equitable response
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20differential%20impacts%20of%20COVID-19%20among%20hospitalised%20patients%20in%20South%20Africa%20for%20equitable%20response&rft.jtitle=South%20African%20medical%20journal&rft.au=Phaswana-mafuya,%20N&rft.date=2021-11-01&rft.volume=111&rft.issue=11&rft.spage=1084&rft.epage=1091&rft.pages=1084-1091&rft.issn=0256-9574&rft.eissn=2078-5135&rft_id=info:doi/10.7196/SAMJ.2021.v111i11.15812&rft_dat=%3Cgale_cross%3EA681771489%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-ac9a867a4c1e6260e6d8e3f3b0746bfe2a64021e09028c63dd05047863701cf63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A681771489&rft_sabinet_id=https://hdl.handle.net/10520/ejc-m_samj_v111_i11_a1084&rfr_iscdi=true