Loading…
Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution
The full catalog of satellite DNA (satDNA) within a same genome constitutes the satellitome. The Library Hypothesis predicts that satDNA in relative species reflects that in their common ancestor, but the evolutionary mechanisms and pathways of satDNA evolution have never been analyzed for full sate...
Saved in:
Published in: | BMC biology 2022-02, Vol.20 (1), p.36-36, Article 36 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c561t-a878332c4ccfa289d53fdf765553573cd41b4b5b7439dc60f9e3b085894fde223 |
---|---|
cites | cdi_FETCH-LOGICAL-c561t-a878332c4ccfa289d53fdf765553573cd41b4b5b7439dc60f9e3b085894fde223 |
container_end_page | 36 |
container_issue | 1 |
container_start_page | 36 |
container_title | BMC biology |
container_volume | 20 |
creator | Camacho, Juan Pedro M Cabrero, Josefa López-León, María Dolores Martín-Peciña, María Perfectti, Francisco Garrido-Ramos, Manuel A Ruiz-Ruano, Francisco J |
description | The full catalog of satellite DNA (satDNA) within a same genome constitutes the satellitome. The Library Hypothesis predicts that satDNA in relative species reflects that in their common ancestor, but the evolutionary mechanisms and pathways of satDNA evolution have never been analyzed for full satellitomes. We compare here the satellitomes of two Oedipodine grasshoppers (Locusta migratoria and Oedaleus decorus) which shared their most recent common ancestor about 22.8 Ma ago.
We found that about one third of their satDNA families (near 60 in every species) showed sequence homology and were grouped into 12 orthologous superfamilies. The turnover rate of consensus sequences was extremely variable among the 20 orthologous family pairs analyzed in both species. The satDNAs shared by both species showed poor association with sequence signatures and motives frequently argued as functional, except for short inverted repeats allowing short dyad symmetries and non-B DNA conformations. Orthologous satDNAs frequently showed different FISH patterns at both intra- and interspecific levels. We defined indices of homogenization and degeneration and quantified the level of incomplete library sorting between species.
Our analyses revealed that satDNA degenerates through point mutation and homogenizes through partial turnovers caused by massive tandem duplications (the so-called satDNA amplification). Remarkably, satDNA amplification increases homogenization, at intragenomic level, and diversification between species, thus constituting the basis for concerted evolution. We suggest a model of satDNA evolution by means of recursive cycles of amplification and degeneration, leading to mostly contingent evolutionary pathways where concerted evolution emerges promptly after lineages split. |
doi_str_mv | 10.1186/s12915-021-01216-9 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_gale_infotracmisc_A693686674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693686674</galeid><doaj_id>oai_doaj_org_article_81d293e5adca4969a7149cbea810c952</doaj_id><sourcerecordid>A693686674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-a878332c4ccfa289d53fdf765553573cd41b4b5b7439dc60f9e3b085894fde223</originalsourceid><addsrcrecordid>eNpdkklv1DAYhiMEogv8AQ4oEhcODXhfLkijlqVSBQeWq-XYTsajTJzaTiv-Pc7MUDocIkfx8z6OP71V9QqCdxAK9j5BJCFtAIINgAiyRj6pTiEnsOEA8KeP3k-qs5Q2ACDKOX5enWAKMZAAnFa333V2w-Bz2LrahO2ko09hrENX5_tQB2f9FKwfXd1HndI6TJOLqV77fj2UJ6c6r5fgmP3YuzHXo85zdEs-Hcyuvvq6qt1dGObsw_iietbpIbmXh_W8-vnp44_LL83Nt8_Xl6ubxlAGc6MFFxgjQ4zpNBLSUtzZjjNKKaYcG0tgS1racoKlNQx00uEWCCok6axDCJ9X13uvDXqjpui3Ov5WQXu1-xBir3TM3gxOCWiRxI5qazSRTGoOiTSt0wICI-niuti70r2b5vbIduV_rXa2eVaEScpBwT_s8cJunTVlLlEPR6njndGvVR_ulBAIMSKK4O1BEMPt7FJWW59MmaYeXZiTQgwxIZEQpKBv_kM3YY5jmWyhMCAYAQT-Ub0u9_VjF8q5ZpGqFZOYCcb44kJ7ysSQUnTdwy9DoJbKqX3lVKmc2lVOyRJ6_fiyD5G_HcN_ADEf0uU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630432020</pqid></control><display><type>article</type><title>Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Camacho, Juan Pedro M ; Cabrero, Josefa ; López-León, María Dolores ; Martín-Peciña, María ; Perfectti, Francisco ; Garrido-Ramos, Manuel A ; Ruiz-Ruano, Francisco J</creator><creatorcontrib>Camacho, Juan Pedro M ; Cabrero, Josefa ; López-León, María Dolores ; Martín-Peciña, María ; Perfectti, Francisco ; Garrido-Ramos, Manuel A ; Ruiz-Ruano, Francisco J</creatorcontrib><description>The full catalog of satellite DNA (satDNA) within a same genome constitutes the satellitome. The Library Hypothesis predicts that satDNA in relative species reflects that in their common ancestor, but the evolutionary mechanisms and pathways of satDNA evolution have never been analyzed for full satellitomes. We compare here the satellitomes of two Oedipodine grasshoppers (Locusta migratoria and Oedaleus decorus) which shared their most recent common ancestor about 22.8 Ma ago.
We found that about one third of their satDNA families (near 60 in every species) showed sequence homology and were grouped into 12 orthologous superfamilies. The turnover rate of consensus sequences was extremely variable among the 20 orthologous family pairs analyzed in both species. The satDNAs shared by both species showed poor association with sequence signatures and motives frequently argued as functional, except for short inverted repeats allowing short dyad symmetries and non-B DNA conformations. Orthologous satDNAs frequently showed different FISH patterns at both intra- and interspecific levels. We defined indices of homogenization and degeneration and quantified the level of incomplete library sorting between species.
Our analyses revealed that satDNA degenerates through point mutation and homogenizes through partial turnovers caused by massive tandem duplications (the so-called satDNA amplification). Remarkably, satDNA amplification increases homogenization, at intragenomic level, and diversification between species, thus constituting the basis for concerted evolution. We suggest a model of satDNA evolution by means of recursive cycles of amplification and degeneration, leading to mostly contingent evolutionary pathways where concerted evolution emerges promptly after lineages split.</description><identifier>ISSN: 1741-7007</identifier><identifier>EISSN: 1741-7007</identifier><identifier>DOI: 10.1186/s12915-021-01216-9</identifier><identifier>PMID: 35130900</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Amplification ; Analysis ; Animals ; Arrays ; Biological evolution ; Cytogenetics ; Cytogenomics ; Degeneration ; Deoxyribonucleic acid ; DNA ; DNA, Satellite - genetics ; Evolution ; Evolution, Molecular ; Evolutionary biology ; Gene Library ; Genomes ; Grasshoppers ; Grasshoppers - genetics ; Homogenization ; Homology ; Humans ; Hypotheses ; Libraries ; Library Hypothesis ; Methods ; Mutation ; Orthoptera ; Phylogeny ; Point mutation ; Satellite DNA ; Satellitome Evolution ; Species ; Turnover rate</subject><ispartof>BMC biology, 2022-02, Vol.20 (1), p.36-36, Article 36</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-a878332c4ccfa289d53fdf765553573cd41b4b5b7439dc60f9e3b085894fde223</citedby><cites>FETCH-LOGICAL-c561t-a878332c4ccfa289d53fdf765553573cd41b4b5b7439dc60f9e3b085894fde223</cites><orcidid>0000-0002-5391-301X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2630432020/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2630432020?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25730,27900,27901,36988,36989,44565,53765,53767,75095</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35130900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-469570$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Camacho, Juan Pedro M</creatorcontrib><creatorcontrib>Cabrero, Josefa</creatorcontrib><creatorcontrib>López-León, María Dolores</creatorcontrib><creatorcontrib>Martín-Peciña, María</creatorcontrib><creatorcontrib>Perfectti, Francisco</creatorcontrib><creatorcontrib>Garrido-Ramos, Manuel A</creatorcontrib><creatorcontrib>Ruiz-Ruano, Francisco J</creatorcontrib><title>Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution</title><title>BMC biology</title><addtitle>BMC Biol</addtitle><description>The full catalog of satellite DNA (satDNA) within a same genome constitutes the satellitome. The Library Hypothesis predicts that satDNA in relative species reflects that in their common ancestor, but the evolutionary mechanisms and pathways of satDNA evolution have never been analyzed for full satellitomes. We compare here the satellitomes of two Oedipodine grasshoppers (Locusta migratoria and Oedaleus decorus) which shared their most recent common ancestor about 22.8 Ma ago.
We found that about one third of their satDNA families (near 60 in every species) showed sequence homology and were grouped into 12 orthologous superfamilies. The turnover rate of consensus sequences was extremely variable among the 20 orthologous family pairs analyzed in both species. The satDNAs shared by both species showed poor association with sequence signatures and motives frequently argued as functional, except for short inverted repeats allowing short dyad symmetries and non-B DNA conformations. Orthologous satDNAs frequently showed different FISH patterns at both intra- and interspecific levels. We defined indices of homogenization and degeneration and quantified the level of incomplete library sorting between species.
Our analyses revealed that satDNA degenerates through point mutation and homogenizes through partial turnovers caused by massive tandem duplications (the so-called satDNA amplification). Remarkably, satDNA amplification increases homogenization, at intragenomic level, and diversification between species, thus constituting the basis for concerted evolution. We suggest a model of satDNA evolution by means of recursive cycles of amplification and degeneration, leading to mostly contingent evolutionary pathways where concerted evolution emerges promptly after lineages split.</description><subject>Amplification</subject><subject>Analysis</subject><subject>Animals</subject><subject>Arrays</subject><subject>Biological evolution</subject><subject>Cytogenetics</subject><subject>Cytogenomics</subject><subject>Degeneration</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Satellite - genetics</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary biology</subject><subject>Gene Library</subject><subject>Genomes</subject><subject>Grasshoppers</subject><subject>Grasshoppers - genetics</subject><subject>Homogenization</subject><subject>Homology</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Libraries</subject><subject>Library Hypothesis</subject><subject>Methods</subject><subject>Mutation</subject><subject>Orthoptera</subject><subject>Phylogeny</subject><subject>Point mutation</subject><subject>Satellite DNA</subject><subject>Satellitome Evolution</subject><subject>Species</subject><subject>Turnover rate</subject><issn>1741-7007</issn><issn>1741-7007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkklv1DAYhiMEogv8AQ4oEhcODXhfLkijlqVSBQeWq-XYTsajTJzaTiv-Pc7MUDocIkfx8z6OP71V9QqCdxAK9j5BJCFtAIINgAiyRj6pTiEnsOEA8KeP3k-qs5Q2ACDKOX5enWAKMZAAnFa333V2w-Bz2LrahO2ko09hrENX5_tQB2f9FKwfXd1HndI6TJOLqV77fj2UJ6c6r5fgmP3YuzHXo85zdEs-Hcyuvvq6qt1dGObsw_iietbpIbmXh_W8-vnp44_LL83Nt8_Xl6ubxlAGc6MFFxgjQ4zpNBLSUtzZjjNKKaYcG0tgS1racoKlNQx00uEWCCok6axDCJ9X13uvDXqjpui3Ov5WQXu1-xBir3TM3gxOCWiRxI5qazSRTGoOiTSt0wICI-niuti70r2b5vbIduV_rXa2eVaEScpBwT_s8cJunTVlLlEPR6njndGvVR_ulBAIMSKK4O1BEMPt7FJWW59MmaYeXZiTQgwxIZEQpKBv_kM3YY5jmWyhMCAYAQT-Ub0u9_VjF8q5ZpGqFZOYCcb44kJ7ysSQUnTdwy9DoJbKqX3lVKmc2lVOyRJ6_fiyD5G_HcN_ADEf0uU</recordid><startdate>20220207</startdate><enddate>20220207</enddate><creator>Camacho, Juan Pedro M</creator><creator>Cabrero, Josefa</creator><creator>López-León, María Dolores</creator><creator>Martín-Peciña, María</creator><creator>Perfectti, Francisco</creator><creator>Garrido-Ramos, Manuel A</creator><creator>Ruiz-Ruano, Francisco J</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4U-</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5391-301X</orcidid></search><sort><creationdate>20220207</creationdate><title>Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution</title><author>Camacho, Juan Pedro M ; Cabrero, Josefa ; López-León, María Dolores ; Martín-Peciña, María ; Perfectti, Francisco ; Garrido-Ramos, Manuel A ; Ruiz-Ruano, Francisco J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-a878332c4ccfa289d53fdf765553573cd41b4b5b7439dc60f9e3b085894fde223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplification</topic><topic>Analysis</topic><topic>Animals</topic><topic>Arrays</topic><topic>Biological evolution</topic><topic>Cytogenetics</topic><topic>Cytogenomics</topic><topic>Degeneration</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Satellite - genetics</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary biology</topic><topic>Gene Library</topic><topic>Genomes</topic><topic>Grasshoppers</topic><topic>Grasshoppers - genetics</topic><topic>Homogenization</topic><topic>Homology</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Libraries</topic><topic>Library Hypothesis</topic><topic>Methods</topic><topic>Mutation</topic><topic>Orthoptera</topic><topic>Phylogeny</topic><topic>Point mutation</topic><topic>Satellite DNA</topic><topic>Satellitome Evolution</topic><topic>Species</topic><topic>Turnover rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camacho, Juan Pedro M</creatorcontrib><creatorcontrib>Cabrero, Josefa</creatorcontrib><creatorcontrib>López-León, María Dolores</creatorcontrib><creatorcontrib>Martín-Peciña, María</creatorcontrib><creatorcontrib>Perfectti, Francisco</creatorcontrib><creatorcontrib>Garrido-Ramos, Manuel A</creatorcontrib><creatorcontrib>Ruiz-Ruano, Francisco J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>Directory of Open Access Journals</collection><jtitle>BMC biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camacho, Juan Pedro M</au><au>Cabrero, Josefa</au><au>López-León, María Dolores</au><au>Martín-Peciña, María</au><au>Perfectti, Francisco</au><au>Garrido-Ramos, Manuel A</au><au>Ruiz-Ruano, Francisco J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution</atitle><jtitle>BMC biology</jtitle><addtitle>BMC Biol</addtitle><date>2022-02-07</date><risdate>2022</risdate><volume>20</volume><issue>1</issue><spage>36</spage><epage>36</epage><pages>36-36</pages><artnum>36</artnum><issn>1741-7007</issn><eissn>1741-7007</eissn><abstract>The full catalog of satellite DNA (satDNA) within a same genome constitutes the satellitome. The Library Hypothesis predicts that satDNA in relative species reflects that in their common ancestor, but the evolutionary mechanisms and pathways of satDNA evolution have never been analyzed for full satellitomes. We compare here the satellitomes of two Oedipodine grasshoppers (Locusta migratoria and Oedaleus decorus) which shared their most recent common ancestor about 22.8 Ma ago.
We found that about one third of their satDNA families (near 60 in every species) showed sequence homology and were grouped into 12 orthologous superfamilies. The turnover rate of consensus sequences was extremely variable among the 20 orthologous family pairs analyzed in both species. The satDNAs shared by both species showed poor association with sequence signatures and motives frequently argued as functional, except for short inverted repeats allowing short dyad symmetries and non-B DNA conformations. Orthologous satDNAs frequently showed different FISH patterns at both intra- and interspecific levels. We defined indices of homogenization and degeneration and quantified the level of incomplete library sorting between species.
Our analyses revealed that satDNA degenerates through point mutation and homogenizes through partial turnovers caused by massive tandem duplications (the so-called satDNA amplification). Remarkably, satDNA amplification increases homogenization, at intragenomic level, and diversification between species, thus constituting the basis for concerted evolution. We suggest a model of satDNA evolution by means of recursive cycles of amplification and degeneration, leading to mostly contingent evolutionary pathways where concerted evolution emerges promptly after lineages split.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>35130900</pmid><doi>10.1186/s12915-021-01216-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5391-301X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-7007 |
ispartof | BMC biology, 2022-02, Vol.20 (1), p.36-36, Article 36 |
issn | 1741-7007 1741-7007 |
language | eng |
recordid | cdi_gale_infotracmisc_A693686674 |
source | Publicly Available Content Database; PubMed Central |
subjects | Amplification Analysis Animals Arrays Biological evolution Cytogenetics Cytogenomics Degeneration Deoxyribonucleic acid DNA DNA, Satellite - genetics Evolution Evolution, Molecular Evolutionary biology Gene Library Genomes Grasshoppers Grasshoppers - genetics Homogenization Homology Humans Hypotheses Libraries Library Hypothesis Methods Mutation Orthoptera Phylogeny Point mutation Satellite DNA Satellitome Evolution Species Turnover rate |
title | Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T20%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satellitome%20comparison%20of%20two%20oedipodine%20grasshoppers%20highlights%20the%20contingent%20nature%20of%20satellite%20DNA%20evolution&rft.jtitle=BMC%20biology&rft.au=Camacho,%20Juan%20Pedro%20M&rft.date=2022-02-07&rft.volume=20&rft.issue=1&rft.spage=36&rft.epage=36&rft.pages=36-36&rft.artnum=36&rft.issn=1741-7007&rft.eissn=1741-7007&rft_id=info:doi/10.1186/s12915-021-01216-9&rft_dat=%3Cgale_doaj_%3EA693686674%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c561t-a878332c4ccfa289d53fdf765553573cd41b4b5b7439dc60f9e3b085894fde223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2630432020&rft_id=info:pmid/35130900&rft_galeid=A693686674&rfr_iscdi=true |