Loading…
Synthesis of Graphene Oxide (GO) by Modified Hummer’s Method with Improved Oxidation through Ozone Treatment
Graphene Oxide (GO) is one of the common members of the graphene family owing to its unprecedented and unique properties. These properties attract researchers to use GO in several potential applications such as a transparent electrode in light-emitting diodes (LED), biosensors and solar cells, etc....
Saved in:
Published in: | Journal of the Chemical Society of Pakistan 2023-02, Vol.45 (1), p.1-1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphene Oxide (GO) is one of the common members of the graphene family owing to its unprecedented and unique properties. These properties attract researchers to use GO in several potential applications such as a transparent electrode in light-emitting diodes (LED), biosensors and solar cells, etc. In this work, GO was produced through the oxidation of graphite by potassium permanganate using modified Hummer’s method and this was followed by ozone treatment. The crystallographic structure, chemical properties, surface morphologies, and optical properties of before and after treatment of GO were determined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and UV- visible spectroscopy. The FTIR observation confirmed the formation of GO from graphite flakes. XRD results showed peak at11.6˚ with a different interlayer spacing of 0.7nm and 0.8nm for GO and ozone-treated graphene oxide (O- GO) respectively. While for both GO and O- GO all the peaks were at the same position. Further, SEM micrographs of GO exhibited the multilayered graphene oxide with variable thickness. While the rough surface of O- GO suggests the reduction of GO particle size due to ozonation. Ultraviolet-visible spectra of GO at 223.2 nm was noted which is attributed to atomic C- C bonds but O- GO exhibited the peak shift at 232.7 nm thereby suggesting a higher surface area. |
---|---|
ISSN: | 0253-5106 |
DOI: | 10.52568/001190/JCSP/45.01.2023 |