Loading…
Role of Biotransformation of IAcacia nilotica/I Metabolites by IAspergillus subolivaceus/I in Boosting ILupinus termis/I Yield: A Promising Approach to Sustainable Agriculture
Biotransformation plays a significant role in sustainable agriculture. This process involves utilizing microorganisms, such as bacteria and fungi, to transform organic compounds and metabolites into bioactive compounds which have beneficial effects on plant growth, yield, and soil characters. Accord...
Saved in:
Published in: | Sustainability 2023-06, Vol.15 (12) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biotransformation plays a significant role in sustainable agriculture. This process involves utilizing microorganisms, such as bacteria and fungi, to transform organic compounds and metabolites into bioactive compounds which have beneficial effects on plant growth, yield, and soil characters. Accordingly, the present study aims to explore the role of biotransformation of Acacia nilotica metabolites by Aspergillus subolivaceus in boosting L. termis yield, as an important strategy in agricultural sustainability. A pilot experiment was performed on five fungal strains (Fusarium oxysporium A. aculeatus, Aspergillus. subolivaceus, Rhizopus oryzae and Trichoderma viride) which were grown on different parts of plants (A. nilotica leaves; green tea leaves, green pepper fruits and pomegranate fruits), and the results indicated that the most active metabolite for the growth of L. termis seeds was the fungal metabolite of A. subolivaceus growing on A. nilotica. More specifically, we assess how metabolites produced by Aspergillus subolivaceus using A. nilotica leaves affect the biochemical properties and chemical composition of L. termis seeds. A. subolivaceus was grown on leaves from A. nilotica to obtain metabolites and fractionated into four extracts. Two concentrations of each extract were examined by pretreating the seeds of L. termis. The study found that all four extracts contributed to an increase in yield and some biochemical properties of the yielded seeds. The best results were obtained by treating the L. termis seeds with an extract obtained from diethyl ether, which led to a significant increase in total nitrogen, amino nitrogen, glucose and protein contents of the seeds. According to [sup.1]H NMR guided GC/MS analysis, our results showed an increase in phytochemicals such as terpenes, fatty materials, and flavonoids including 3′,4′,7-trimethoxyquercetin and 4-methyl-p-menth-8-en-3-one, which have not been stated before from A. nilotica suggesting that biotransformation may have occurred due to the presence of A. subolivaceus. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su15129509 |