Loading…

Biology and management of hemp russet mite

Hemp is rapidly becoming a crop of global agricultural importance, and one of the more serious pests of this crop is hemp russet mite (HRM) Aculops cannabicola (Acari: Eriophyidae). Significant knowledge gaps presently exist regarding critical aspects of pest biology, quantification of crop damage,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of economic entomology 2023-10, Vol.116 (5), p.1706
Main Authors: Hayes, Christopher Brendan, Carter, Olivia, MacWilliams, Jacob Robert, Cranshaw, Whitney, Chaparro, Jacqueline M, Prenni, Jessica E, Nachappa, Puny
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hemp is rapidly becoming a crop of global agricultural importance, and one of the more serious pests of this crop is hemp russet mite (HRM) Aculops cannabicola (Acari: Eriophyidae). Significant knowledge gaps presently exist regarding critical aspects of pest biology, quantification of crop damage, and efficacy of pesticides. Here we assessed the role of cannabidiol (CBD) on HRM performance, efficacy of sulfur treatments in field trials, and effect of hot water immersion with and without surfactants in reducing HRM counts on hemp cuttings. We found that HRM fecundity was reduced on a high-CBD cultivar compared with a low-CBD cultivar in detached leaf assays. In contrast, HRM fecundity and survival were not impacted when reared on high-CBD diet in artificial feeding assays. This suggests that cannabinoids other than CBD may aid in reduction of mite populations on the high-CBD cultivar. Sulfur sprays reduced HRM populations by up to 98% with the greatest effects seen in plants receiving dual applications, one during the vegetative period in July and the second at the initiation of flowering in August.Yields of plants treated with sulfur increased by up to 33%, and there was a further increase in cannabinoid production by up to 45% relative to untreated plants. Hot water immersion treatments with and without surfactant solution reduced HRM on infested hemp cuttings, and no phytotoxicity was observed. This study provides novel approaches to mitigating HRM at multiple stages in hemp production. Key words: hemp, performance, cannabinoids, sulfur treatment, hot water immersion
ISSN:0022-0493
DOI:10.1093/iee/toad137