Loading…

Antioxidant and Anti-Inflammatory Properties of Quail Yolk Oil via Upregulation of Superoxide Dismutase 1 and Catalase Genes and Downregulation of EIGER and Unpaired 2 Genes in a ID. melanogaster/I Model

Quail egg yolk oil (QEYO) has a rich history of medicinal use, showcasing heightened antioxidant and bioactive properties in our prior studies. This positions QEYO as a promising candidate for therapeutic and cosmetic applications. In this investigation, QEYO was extracted using ethanol/chloroform a...

Full description

Saved in:
Bibliographic Details
Published in:Antioxidants 2024-01, Vol.13 (1)
Main Authors: Ismaila, Muhammad Sani, Sanusi, Kamaldeen Olalekan, Iliyasu, Uwaisu, Imam, Mustapha Umar, Georges, Karla, Sundaram, Venkatesan, Jones, Kegan Romelle
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quail egg yolk oil (QEYO) has a rich history of medicinal use, showcasing heightened antioxidant and bioactive properties in our prior studies. This positions QEYO as a promising candidate for therapeutic and cosmetic applications. In this investigation, QEYO was extracted using ethanol/chloroform and 2-propanol/hexane solvents. GC–MS and FTIR analyses quantified 14 major bioactive compounds in the ethanol/chloroform fraction and 12 in the 2-propanol/hexane fraction. Toxicity evaluations in fruit flies, spanning acute, sub chronic, and chronic exposures, revealed no adverse effects. Negative geotaxis assays assessed locomotor activity, while biochemical assays using fly hemolymph gauged antioxidant responses. Real-time PCR revealed the relative expression levels of the antioxidant and anti-inflammatory genes. FTIR spectra indicated diverse functional groups, and the GC–MS results associated bioactive compounds with the regulation of the anti-inflammatory genes EIGER and UPD2. While no significant change in SOD activities was noted, male flies treated with specific QEYO doses exhibited increased catalase activity and total antioxidant capacity, coupled with a significant decrease in their malondialdehyde levels. This study offers valuable insights into the bioactive compounds of QEYO and their potential regulatory roles in gene expression.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox13010075