Loading…
Antimicrobial Activity of IArtemisia dracunculus/I Oil-Loaded Agarose/Poly Hydrogel for Bio-Applications
In this study, the potential use of Artemisia dracunculus essential oil in bio-applications was investigated. Firstly, the phytochemicals from Artemisia dracunculus were analyzed by different methods. Secondly, the Artemisia dracunculus essential oil was incorporated into the hydrogel matrix based o...
Saved in:
Published in: | Gels 2023-12, Vol.10 (1) |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the potential use of Artemisia dracunculus essential oil in bio-applications was investigated. Firstly, the phytochemicals from Artemisia dracunculus were analyzed by different methods. Secondly, the Artemisia dracunculus essential oil was incorporated into the hydrogel matrix based on poly(vinyl alcohol) (PVA) and agar (A). The structural, morphological, and physical properties of the hydrogel matrix loaded with different amounts of Artemisia dracunculus essential oil were thoroughly investigated. FTIR analysis revealed the successful loading of the essential oil Artemisia dracunculus into the PVA/A hydrogel matrix. The influence of the mechanical properties and antimicrobial activity of the PVA/A hydrogel matrix loaded with different amounts of Artemisia dracunculus was also assessed. The antimicrobial activity of Artemisia dracunculus (EO Artemisia dracunculus) essential oil was tested using the disk diffusion method and the time-kill assay method after entrapment in the PVA/A hydrogel matrices. The results showed that PVA/agar-based hydrogels loaded with EO Artemisia dracunculus exhibited significant antimicrobial activity (log reduction ratio in the range of 85.5111–100%) against nine pathogenic isolates, both Gram-positive (S. aureus, MRSA, E. faecalis, L. monocytogenes) and Gram-negative (E. coli, K. pneumoniae, S. enteritidis, S. typhimurium, and A. salmonicida). The resulted biocompatible polymers proved to have enhanced properties when functionalized with the essential oil of Artemisia dracunculus, offering opportunities and possibilities for novel applications. |
---|---|
ISSN: | 2310-2861 2310-2861 |
DOI: | 10.3390/gels10010026 |