Loading…

Alleviating Cd Stress in Sunflower I/I through the Sodium Silicate Application

Sunflower has substantial potential for the remediation of heavy metals in soil, but its efficiency in Cd-contaminated soil is limited, with high concentrations of Cd causing stress in plants. Exogenous Si enhances plant tolerance to heavy metals, but the mechanism for enhancing the tolerance of oil...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2024-02, Vol.16 (5)
Main Authors: Wu, Haoying, Wang, Xiyuan, Gao, Haifeng, Chen, Jiao, Zhang, Tingting
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sunflower has substantial potential for the remediation of heavy metals in soil, but its efficiency in Cd-contaminated soil is limited, with high concentrations of Cd causing stress in plants. Exogenous Si enhances plant tolerance to heavy metals, but the mechanism for enhancing the tolerance of oil sunflower under Cd stress is not known. In potting experiments, sunflowers were grown in soil with a Cd concentration of 11.8 mg/kg soil (the maximum value in the Zhundong coal mining area of Xinjiang) and five Si treatment levels (0, 50, 250, 500, and 1500 mg/kg soil). Exogenous Si improved sunflower development, gas exchange characteristics, and antioxidant enzyme activities in sunflower compared with the Cd-only control; exogenous Si application increased Cd concentrations in sunflower roots, stems, and leaves, and Cd was mainly concentrated in sunflower roots. Sunflower biomass increased by 13.83–114.18%, and gas exchange parameters increased by 16.95–36.03%, 30.06–66.82%, and 9.77–14.71%, respectively, as compared to the control. With the increase in sodium silicate concentrations, sunflower antioxidant enzyme activities increased by 8.81–150.28%, 91.35–351.55%, and 35.11–54.69%, respectively, and MDA content decreased by 3.34–25.14% as compared to Si0. Moreover, exogenous Si increased Cd uptake and minimized Cd stress in sunflowers at the seedling and blooming stages, and it potentially facilitated the phytoremediation of Cd-contaminated soils through enriched plants such as sunflower, as well as contributing to the achievement of sustainable development of the soil environment.
ISSN:2071-1050
2071-1050
DOI:10.3390/su16052037