Loading…

Removal of Diclofenac in Wastewater Using Biosorption and Advanced Oxidation Techniques: Comparative Results

Wastewater treatment is a topic of primary interest with regard to the environment. Diclofenac is a common analgesic drug often detected in wastewater and surface water. In this paper, three commonly available agrifood waste types (artichoke agrowaste, olive-mill residues, and citrus waste) were reu...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2020-12, Vol.12 (12), p.3567
Main Authors: Angosto, Jose M, Roca, Maria J, Fernandez-Lopez, Jose A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wastewater treatment is a topic of primary interest with regard to the environment. Diclofenac is a common analgesic drug often detected in wastewater and surface water. In this paper, three commonly available agrifood waste types (artichoke agrowaste, olive-mill residues, and citrus waste) were reused as sorbents of diclofenac present in aqueous effluents. Citrus-waste biomass for a dose of 2 g·L−1 allowed for removing 99.7% of diclofenac present in the initial sample, with a sorption capacity of 9 mg of adsorbed diclofenac for each gram of used biomass. The respective values obtained for olive-mill residues and artichoke agrowaste were around 4.15 mg·g−1. Advanced oxidation processes with UV/H2O2 and UV/HOCl were shown to be effective treatments for the elimination of diclofenac. A significant reduction in chemical oxygen demand (COD; 40–48%) was also achieved with these oxidation treatments. Despite the lesser effectiveness of the sorption process, it should be considered that the reuse and valorization of these lignocellulosic agrifood residues would facilitate the fostering of a circular economy.
ISSN:2073-4441
2073-4441
DOI:10.3390/w12123567