Loading…

Scaling laws to understand tidal dissipation in fluid planetary regions and stars I. Rotation, stratification and thermal diffusivity

Context. Tidal dissipation in planets and stars is one of the key physical mechanisms driving the evolution of star-planet and planet-moon systems. Several signatures of its action are observed in planetary systems thanks to their orbital architecture and the rotational state of their components. Ai...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2015-09, Vol.581, p.1-22
Main Authors: Auclair Desrotour, P., Mathis, S., Le Poncin-Lafitte, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c432t-d68d73501a25bc62b5865fa92278fdd7d7343186845f27ae5011c3ff658fce2f3
cites cdi_FETCH-LOGICAL-c432t-d68d73501a25bc62b5865fa92278fdd7d7343186845f27ae5011c3ff658fce2f3
container_end_page 22
container_issue
container_start_page 1
container_title Astronomy and astrophysics (Berlin)
container_volume 581
creator Auclair Desrotour, P.
Mathis, S.
Le Poncin-Lafitte, C.
description Context. Tidal dissipation in planets and stars is one of the key physical mechanisms driving the evolution of star-planet and planet-moon systems. Several signatures of its action are observed in planetary systems thanks to their orbital architecture and the rotational state of their components. Aims. Tidal dissipation inside the fluid layers of celestial bodies is intrinsically linked to the dynamics and physical properties of those bodies. This complex dependence must be characterized. Methods. We compute the tidal kinetic energy dissipated by viscous friction and thermal diffusion in a rotating local fluid Cartesian section of a star, planet, or moon submitted to a periodic tidal forcing. The properties of tidal gravito-inertial waves excited by the perturbation are derived analytically as explicit functions of the tidal frequency and local fluid parameters (i.e. the rotation, the buoyancy frequency characterizing the entropy stratification, viscous and thermal diffusivities) for periodic normal modes. Results. The sensitivity of the resulting dissipation frequency-spectra, which could be highly resonant, to a control parameter of the system is either important or negligible depending on the position in the regime diagram relevant for planetary and stellar interiors. For corresponding asymptotic behaviours of tidal gravito-inertial waves dissipated by viscous friction and thermal diffusion, scaling laws for the frequencies, number, width, height, and contrast with the non-resonant background of resonances are derived to quantify these variations. Conclusions. We characterize the strong impact of the internal physics and dynamics of fluid planetary layers and stars on the dissipation of tidal kinetic energy in their bulk. We point out the key control parameters that really play a role in tidal dissipation and demonstrate how it is now necessary to develop ab initio modelling for tidal dissipation in celestial bodies.
doi_str_mv 10.1051/0004-6361/201526246
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01383679v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1773834886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-d68d73501a25bc62b5865fa92278fdd7d7343186845f27ae5011c3ff658fce2f3</originalsourceid><addsrcrecordid>eNqNkcluFDEYhK0IpAyBJ8jFxyDRiXd7jiGQTS0hBhBHy_GSGHq6J7Y7ywPkveOeRnPm5OX_qvSXCoBDjI4x4vgEIcQaQQU-IQhzIggTe2CBGSUNkky8AYsdsQ_e5fynPglWdAFefljTxf4WduYxwzLAsXc-5WJ6B0t0poMu5hw3psShh7GHoRujg5vO9L6Y9AyTv62TDCdBlaUMr47haihbwaf6leotRDsbbG3vfFpvjUMYc3yI5fk9eBtMl_2Hf-cB-HX-9efZZdN-u7g6O20bW6OUxgnlJOUIG8JvrCA3XAkezJIQqYJzsg4ZxUooxgORxlcSWxqC4CpYTwI9AB9n3zvT6U2K65pADybqy9NWW280wlRRIZcPuLJHM7tJw_3oc9HrmK3vpuTDmDWWS0oEQ4z9ByqrLVNKVJTOqE1DzsmH3RoY6alLPTWlp6b0rsuqamZVzMU_7SQm_dVCUsm1Qr_151V7_X3Vnusv9BU7i6E6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773834886</pqid></control><display><type>article</type><title>Scaling laws to understand tidal dissipation in fluid planetary regions and stars I. Rotation, stratification and thermal diffusivity</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Auclair Desrotour, P. ; Mathis, S. ; Le Poncin-Lafitte, C.</creator><creatorcontrib>Auclair Desrotour, P. ; Mathis, S. ; Le Poncin-Lafitte, C.</creatorcontrib><description>Context. Tidal dissipation in planets and stars is one of the key physical mechanisms driving the evolution of star-planet and planet-moon systems. Several signatures of its action are observed in planetary systems thanks to their orbital architecture and the rotational state of their components. Aims. Tidal dissipation inside the fluid layers of celestial bodies is intrinsically linked to the dynamics and physical properties of those bodies. This complex dependence must be characterized. Methods. We compute the tidal kinetic energy dissipated by viscous friction and thermal diffusion in a rotating local fluid Cartesian section of a star, planet, or moon submitted to a periodic tidal forcing. The properties of tidal gravito-inertial waves excited by the perturbation are derived analytically as explicit functions of the tidal frequency and local fluid parameters (i.e. the rotation, the buoyancy frequency characterizing the entropy stratification, viscous and thermal diffusivities) for periodic normal modes. Results. The sensitivity of the resulting dissipation frequency-spectra, which could be highly resonant, to a control parameter of the system is either important or negligible depending on the position in the regime diagram relevant for planetary and stellar interiors. For corresponding asymptotic behaviours of tidal gravito-inertial waves dissipated by viscous friction and thermal diffusion, scaling laws for the frequencies, number, width, height, and contrast with the non-resonant background of resonances are derived to quantify these variations. Conclusions. We characterize the strong impact of the internal physics and dynamics of fluid planetary layers and stars on the dissipation of tidal kinetic energy in their bulk. We point out the key control parameters that really play a role in tidal dissipation and demonstrate how it is now necessary to develop ab initio modelling for tidal dissipation in celestial bodies.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201526246</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Astrophysics ; Computational fluid dynamics ; Dissipation ; Dynamics ; Fluid flow ; Fluids ; hydrodynamics ; Physics ; planet-star interactions ; planets and satellites: dynamical evolution and stability ; Stars ; Tidal energy ; Tidal power ; turbulence ; waves</subject><ispartof>Astronomy and astrophysics (Berlin), 2015-09, Vol.581, p.1-22</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-d68d73501a25bc62b5865fa92278fdd7d7343186845f27ae5011c3ff658fce2f3</citedby><cites>FETCH-LOGICAL-c432t-d68d73501a25bc62b5865fa92278fdd7d7343186845f27ae5011c3ff658fce2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-01383679$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Auclair Desrotour, P.</creatorcontrib><creatorcontrib>Mathis, S.</creatorcontrib><creatorcontrib>Le Poncin-Lafitte, C.</creatorcontrib><title>Scaling laws to understand tidal dissipation in fluid planetary regions and stars I. Rotation, stratification and thermal diffusivity</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Tidal dissipation in planets and stars is one of the key physical mechanisms driving the evolution of star-planet and planet-moon systems. Several signatures of its action are observed in planetary systems thanks to their orbital architecture and the rotational state of their components. Aims. Tidal dissipation inside the fluid layers of celestial bodies is intrinsically linked to the dynamics and physical properties of those bodies. This complex dependence must be characterized. Methods. We compute the tidal kinetic energy dissipated by viscous friction and thermal diffusion in a rotating local fluid Cartesian section of a star, planet, or moon submitted to a periodic tidal forcing. The properties of tidal gravito-inertial waves excited by the perturbation are derived analytically as explicit functions of the tidal frequency and local fluid parameters (i.e. the rotation, the buoyancy frequency characterizing the entropy stratification, viscous and thermal diffusivities) for periodic normal modes. Results. The sensitivity of the resulting dissipation frequency-spectra, which could be highly resonant, to a control parameter of the system is either important or negligible depending on the position in the regime diagram relevant for planetary and stellar interiors. For corresponding asymptotic behaviours of tidal gravito-inertial waves dissipated by viscous friction and thermal diffusion, scaling laws for the frequencies, number, width, height, and contrast with the non-resonant background of resonances are derived to quantify these variations. Conclusions. We characterize the strong impact of the internal physics and dynamics of fluid planetary layers and stars on the dissipation of tidal kinetic energy in their bulk. We point out the key control parameters that really play a role in tidal dissipation and demonstrate how it is now necessary to develop ab initio modelling for tidal dissipation in celestial bodies.</description><subject>Astrophysics</subject><subject>Computational fluid dynamics</subject><subject>Dissipation</subject><subject>Dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>hydrodynamics</subject><subject>Physics</subject><subject>planet-star interactions</subject><subject>planets and satellites: dynamical evolution and stability</subject><subject>Stars</subject><subject>Tidal energy</subject><subject>Tidal power</subject><subject>turbulence</subject><subject>waves</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkcluFDEYhK0IpAyBJ8jFxyDRiXd7jiGQTS0hBhBHy_GSGHq6J7Y7ywPkveOeRnPm5OX_qvSXCoBDjI4x4vgEIcQaQQU-IQhzIggTe2CBGSUNkky8AYsdsQ_e5fynPglWdAFefljTxf4WduYxwzLAsXc-5WJ6B0t0poMu5hw3psShh7GHoRujg5vO9L6Y9AyTv62TDCdBlaUMr47haihbwaf6leotRDsbbG3vfFpvjUMYc3yI5fk9eBtMl_2Hf-cB-HX-9efZZdN-u7g6O20bW6OUxgnlJOUIG8JvrCA3XAkezJIQqYJzsg4ZxUooxgORxlcSWxqC4CpYTwI9AB9n3zvT6U2K65pADybqy9NWW280wlRRIZcPuLJHM7tJw_3oc9HrmK3vpuTDmDWWS0oEQ4z9ByqrLVNKVJTOqE1DzsmH3RoY6alLPTWlp6b0rsuqamZVzMU_7SQm_dVCUsm1Qr_151V7_X3Vnusv9BU7i6E6</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Auclair Desrotour, P.</creator><creator>Mathis, S.</creator><creator>Le Poncin-Lafitte, C.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20150901</creationdate><title>Scaling laws to understand tidal dissipation in fluid planetary regions and stars I. Rotation, stratification and thermal diffusivity</title><author>Auclair Desrotour, P. ; Mathis, S. ; Le Poncin-Lafitte, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-d68d73501a25bc62b5865fa92278fdd7d7343186845f27ae5011c3ff658fce2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astrophysics</topic><topic>Computational fluid dynamics</topic><topic>Dissipation</topic><topic>Dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>hydrodynamics</topic><topic>Physics</topic><topic>planet-star interactions</topic><topic>planets and satellites: dynamical evolution and stability</topic><topic>Stars</topic><topic>Tidal energy</topic><topic>Tidal power</topic><topic>turbulence</topic><topic>waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auclair Desrotour, P.</creatorcontrib><creatorcontrib>Mathis, S.</creatorcontrib><creatorcontrib>Le Poncin-Lafitte, C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auclair Desrotour, P.</au><au>Mathis, S.</au><au>Le Poncin-Lafitte, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling laws to understand tidal dissipation in fluid planetary regions and stars I. Rotation, stratification and thermal diffusivity</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>581</volume><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context. Tidal dissipation in planets and stars is one of the key physical mechanisms driving the evolution of star-planet and planet-moon systems. Several signatures of its action are observed in planetary systems thanks to their orbital architecture and the rotational state of their components. Aims. Tidal dissipation inside the fluid layers of celestial bodies is intrinsically linked to the dynamics and physical properties of those bodies. This complex dependence must be characterized. Methods. We compute the tidal kinetic energy dissipated by viscous friction and thermal diffusion in a rotating local fluid Cartesian section of a star, planet, or moon submitted to a periodic tidal forcing. The properties of tidal gravito-inertial waves excited by the perturbation are derived analytically as explicit functions of the tidal frequency and local fluid parameters (i.e. the rotation, the buoyancy frequency characterizing the entropy stratification, viscous and thermal diffusivities) for periodic normal modes. Results. The sensitivity of the resulting dissipation frequency-spectra, which could be highly resonant, to a control parameter of the system is either important or negligible depending on the position in the regime diagram relevant for planetary and stellar interiors. For corresponding asymptotic behaviours of tidal gravito-inertial waves dissipated by viscous friction and thermal diffusion, scaling laws for the frequencies, number, width, height, and contrast with the non-resonant background of resonances are derived to quantify these variations. Conclusions. We characterize the strong impact of the internal physics and dynamics of fluid planetary layers and stars on the dissipation of tidal kinetic energy in their bulk. We point out the key control parameters that really play a role in tidal dissipation and demonstrate how it is now necessary to develop ab initio modelling for tidal dissipation in celestial bodies.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201526246</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2015-09, Vol.581, p.1-22
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_cea_01383679v1
source Free E-Journal (出版社公開部分のみ)
subjects Astrophysics
Computational fluid dynamics
Dissipation
Dynamics
Fluid flow
Fluids
hydrodynamics
Physics
planet-star interactions
planets and satellites: dynamical evolution and stability
Stars
Tidal energy
Tidal power
turbulence
waves
title Scaling laws to understand tidal dissipation in fluid planetary regions and stars I. Rotation, stratification and thermal diffusivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20laws%20to%20understand%20tidal%20dissipation%20in%20fluid%20planetary%20regions%20and%20stars%20I.%20Rotation,%20stratification%20and%20thermal%20diffusivity&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Auclair%20Desrotour,%20P.&rft.date=2015-09-01&rft.volume=581&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201526246&rft_dat=%3Cproquest_hal_p%3E1773834886%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-d68d73501a25bc62b5865fa92278fdd7d7343186845f27ae5011c3ff658fce2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1773834886&rft_id=info:pmid/&rfr_iscdi=true